Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
23- Đào Thu Huyền
Xem chi tiết
Minh Hiếu
14 tháng 11 2021 lúc 14:51

Tỉ lệ \(x=\dfrac{y}{-5}\)

x             -4                 -1                2                   3

y             20                 5               -10               -15

Nguyễn ngọc Khế Xanh
Xem chi tiết
Shinichi Kudo
20 tháng 8 2021 lúc 20:17

Bài 5:

A 1 2 3 4 B 1 C 1 D 1

Ta có : \(\widehat{A_1}+\widehat{A_3}=180^o\) (kề bù)

            \(100^o+\widehat{A_3}=180^o\)

            \(\widehat{A_3}=80^o\)

Ta có: \(\widehat{A_3}=\widehat{B_1}=80^o\)

            \(\widehat{A_3}\) và \(\widehat{B_1}\) ở vị trí đồng vị 

\(\Rightarrow AC//BD\)

\(\Rightarrow\widehat{C}_1=\widehat{D_1}=135^o\) (đồng vị)

\(x=135^o\)

b)

G H B K 1 1 1 1

Ta có: \(\widehat{G_1}+\widehat{B_1}=180^o\left(120^o+60^o=180^o\right)\)

               \(\widehat{G_1}\) và \(\widehat{B_1}\) ở vị trí trong cùng phía

\(\Rightarrow QH//BK\)

\(\Rightarrow\widehat{H_1}=\widehat{K_1}=90^o\)(so le)

\(x=90^o\)

 

nguyễn văn nhật nam
Xem chi tiết
Trần Minh Hoàng
12 tháng 4 2021 lúc 21:43

4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).

Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Rightarrow xy+yz+zx=-1\).

Bất đẳng thức đã cho tương đương:

\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).

Vậy ta có đpcm

l҉o҉n҉g҉ d҉z҉
12 tháng 4 2021 lúc 21:48

mình xí câu 45,47,51 :>

45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b

b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)

\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)

Cộng (1),(2),(3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a=b=c

l҉o҉n҉g҉ d҉z҉
12 tháng 4 2021 lúc 21:50

47. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{\left(a+b\right)^2}{c}+\dfrac{\left(b+c\right)^2}{a}+\dfrac{\left(c+a\right)^2}{b}\ge\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+c}=\dfrac{\left[2\left(a+b+c\right)\right]^2}{a+b+c}=\dfrac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)(đpcm)

Đẳng thức xảy ra <=> a=b=c

_zerotwo00_
Xem chi tiết
THẢO HUỲNH THỊ THU
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 23:10

b: \(\Leftrightarrow\left(2x-7\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{3}\end{matrix}\right.\)

THẢO HUỲNH THỊ THU
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2021 lúc 22:34

a: Xét tứ giác AEDF có 

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

mà \(\widehat{DAE}=90^0\)

nên AEDF là hình chữ nhật

TÚ TRẦN THIÊN THANH
13 tháng 11 2021 lúc 22:34

a) Vì DE//AB nên DE⊥AC và DF//AC nên DF⊥AB

Vì AED=AFD=EAF=900AED=AFD=EAF=900 nên AEDF là hcn

b) Vì E là trung điểm MD và AC nên AMCD là hbh

Mà AC⊥DE nên AMCD là hthoi

c) Vì D là trung điểm BC và AK và BAC=900BAC=900 nên ABKC là hcn

Để ABKC là hv thì AB=AC hay tam giác ABC vuông cân tại A

Hạ Nhi
Xem chi tiết