2.b)4√8-√18-6√1/2-√200
3.a)(a√6/a+√2a/3+√6a):√6a (a>0)
b)2/3a-1*√3a^2(9a^2-6a+1) (1/3>a>0)
Với giá trị nào của a để các b.thức sau có giá trị = 2:
a) \(\dfrac{3a-1}{3a+1}\) + \(\dfrac{a-3}{a+3}\)
b) \(\dfrac{2a-9}{2a-5}\) + \(\dfrac{3a}{3a-2}\)
c) \(\dfrac{10}{3}\) - \(\dfrac{3a-1}{4a+12}\) - \(\dfrac{7a+2}{6a+18}\)
Biểu diễn các tập hợp sau bằng cách nêu đặc trưng chung của các phần tử trong tập hợp: (a) F = {1; 3; 5; 7; 9} (b) G = {a; e;i; o; u} (c) H = {1, 1; 2, 2; 3, 3; 4, 4; 5, 5; 6, 6; 7, 7; 8, 8; 9, 9} (d) K = {9 + 1a; 8 + 2a; 7 + 3a; 6 + 4a; 5 + 5a; 4 + 6a; 3 + 7a; 2 + 8a; 1 + 9a}
Bài 7: Rút Gọn Các Biểu Thức Sau
a. 5\(\sqrt{25^2}\) - 25x Với X<O
B \(\sqrt{49a^2}\) + 3a Với a \(\ge\) 0
C \(\sqrt{16a^4}\) + 6a\(^2\) Với a Bất Kì
d 3\(\sqrt{9a^6}\) - 6a\(^3\) với a bất kì
e 3\(\sqrt{9a^6}\) - 6a\(^3\) Với a\(\ge\) 0
f \(\sqrt{16a^{10}}\) + 6a\(^5\) với a \(\le0\)
b: B=căn 49a^2+3a
=|7a|+3a
=7a+3a(a>=0)
=10a
c: C=căn16a^4+6a^2
=4a^2+6a^2
=10a^2
d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)
TH1: a>=0
D=6a^3-6a^3=0
TH2: a<0
D=-6a^3-6a^3=-12a^3
e: \(E=3\sqrt{9a^6}-6a^3\)
\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)
=3*3a^3-6a^3(a>=0)
=3a^3
f: \(F=\sqrt{16a^{10}}+6a^5\)
\(=\sqrt{\left(4a^5\right)^2}+6a^5\)
=-4a^5+6a^5(a<=0)
=2a^5
Bài 2: Rút gọn biểu thức
1) 2\(\sqrt{a^{2^{ }}}\) với a \(\ge\) 0
2) 3\(\sqrt{\left(a-2\right)^{2_{ }}}\) với a<2
3) \(\sqrt{81a^{4^{ }}}\) + 3a2
4) \(\sqrt{64a^{2^{ }}}+2a\) (a\(\ge\) 0)
5) 3\(\sqrt{9a^{6^{ }}}-6a^3\) ( a bất kỳ)
6) \(\sqrt{a^{2^{ }}+6a+9}+\sqrt{a^{2^{ }}-6a+9}\) ( a bất kì)
7) \(\dfrac{\sqrt{1-2x+x^2}}{x-1}\)
8) A= \(\dfrac{\sqrt{9x^{2^{ }}-6x+1}}{9x^{2^{ }}-1}\)
9) B= 4-x- \(\sqrt{4-4x+x^2}\)
10) C= \(\sqrt{4x^{2^{ }}-4x+1}-\sqrt{4x^{2^{ }}+4x+1}\)
Làm nốt ::v
\(2.3\sqrt{\left(a-2\right)^2}=3\text{ |}a-2\text{ |}=3\left(a-2\right)\left(a< 2\right)\)
\(3.\sqrt{81a^4}+3a^2=\sqrt{3^4.a^4}+3a^2=9a^2+3a^2=12a^2\)
\(4.\sqrt{64a^2}+2a=\text{ |}8a\text{ |}+2a=8a+2a=10a\left(a>=0\right)\)
\(6.\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}=\text{ |}a+3\text{ |}+\text{ |}a-3\text{ |}\)
\(7.\dfrac{\sqrt{1-2x+x^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\text{ |}x-1\text{ |}}{x-1}\)
\(8.\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{\text{ |}3x-1\text{ |}}{\left(3x-1\right)\left(3x+1\right)}\)
\(9.4-x-\sqrt{4-4x+x^2}=4-x-\sqrt{\left(x-2\right)^2}=4-x-\text{ |}x-2\text{ |}\)
Mình làm ba câu mẫu, bạn theo đó mà làm các câu còn lại.
Giải:
1) \(2\sqrt{a^2}\)
\(=2\left|a\right|\)
\(=2a\left(a\ge0\right)\)
Vậy ...
5) \(3\sqrt{9a^6}-6a^3\)
\(=3\sqrt{\left(3a^3\right)^2}-6a^3\)
\(=3.3a^3-6a^3\)
\(=9a^3-6a^3\)
\(=3a^3\)
Vậy ...
10) \(C=\sqrt{4x^2-4x+1}-\sqrt{4x^2+4x+1}\)
\(\Leftrightarrow C=\sqrt{\left(2x-1\right)^2}-\sqrt{\left(2x+1\right)^2}\)
\(\Leftrightarrow C=2x-1^2-\left(2x+1^2\right)\)
\(\Leftrightarrow C=2x-1-2x-1\)
\(\Leftrightarrow C=-2\)
Vậy ...
cho biểu thức P=\(\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right).\dfrac{6a}{a^2-6a+9}\)
a.rút gọn P
b.tìm giá trị của A để P>0
Lời giải:
a) ĐKXĐ: $a\neq 0; a\neq 3; a\neq 2$
\(P=\left[\frac{a}{3a(a-2)}-\frac{2a-3}{a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\left[\frac{a^2}{3a^2(a-2)}-\frac{6a-9}{3a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\frac{a^2-6a+9}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{(a-3)^2}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{2}{a(a-2)}\)
b)
Để $P>0\Leftrightarrow \frac{2}{a(a-2)}>0\Leftrightarrow a(a-2)>0$
$\Leftrightarrow a>2$ hoặc $a< 0$
Kết hợp với ĐKXĐ suy ra $(a>2; a\neq 3)$ hoặc $a< 0$
ĐKXĐ: \(a\notin\left\{0;2\right\}\)
a) Ta có: \(P=\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right)\cdot\dfrac{6a}{a^2-6a+9}\)
\(=\left(\dfrac{a}{3a\left(a-2\right)}+\dfrac{2a-3}{a^2\left(2-a\right)}\right)\cdot\dfrac{6a}{a^2-6a+9}\)
\(=\left(\dfrac{a^2}{3a^2\cdot\left(a-2\right)}-\dfrac{3\left(2a-3\right)}{3a^2\cdot\left(a-2\right)}\right)\cdot\dfrac{6a}{\left(a-3\right)^2}\)
\(=\dfrac{a^2-6a+9}{3a^2\cdot\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)
\(=\dfrac{\left(a-3\right)^2}{3a^2\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)
\(=\dfrac{2}{a\left(a-2\right)}\)
b) Để P>0 thì \(\dfrac{2}{a\left(a-2\right)}>0\)
mà 2>0
nên \(a\left(a-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a>2\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)
Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)
Vậy: Để P>0 thì \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)
làm tính chia
[a^3 - (4a^6 + 6a^5 - 9a^4): 6a^2] . ( 1,5a^2 + 2/3a^4)
\(=\left(a^3-\dfrac{2}{3}a^4-a^3+\dfrac{3}{2}a^2\right)\cdot\left(\dfrac{3}{2}a^2+\dfrac{2}{3}a^4\right)\)
\(=\left(\dfrac{3}{2}a^2-\dfrac{2}{3}a^4\right)\left(\dfrac{3}{2}a^2+\dfrac{2}{3}a^4\right)\)
\(=\dfrac{9}{4}a^4-\dfrac{4}{9}a^8\)
Tìm số tự nhiên a biết:
a) 10 ⋮ 3 a + 1
b) a + 6 ⋮ a + 1
c) 3 a + 7 ⋮ 2 a + 3
d) 6 a + 11 ⋮ 2 a + 3
Tìm số tự nhiên a biết:
a, 10 ⋮ 3a+1
b, a+6 ⋮ a+1
c, 3a+7 ⋮ 2a+3
d, 6a+11 ⋮ 2a+3
a, 10 ⋮ 3a+1 => 3a+1 ∈ Ư(10) => 3a+1 ∈ {1;2;5;10} => a ∈ { 0 ; 1 3 ; 4 3 ; 3 }. Vì a ∈ N, a ∈ {0;3}
b, a+6 ⋮ a+1 => a+1+5 ⋮ a+1 => 5 ⋮ a+1 => a+1 ∈ Ư(5) => a+1 ∈ {1;5} => a ∈ {0;4}
c, 3a+7 ⋮ 2a+3 => 2.(3a+7) - 3(2a+3) ⋮ 2a+3 => 5 ⋮ 2a+3 => 2a+3 ∈ Ư(5)
=> 2a+3 ∈ {1;5} => a = 1
d, 6a+11 ⋮ 2a+3 => 3.(2a+3)+2 ⋮ 2a+3 => 2 ⋮ 2a+3 => 2a+3 ∈ Ư(2)
=> 2a+3 ∈ {1;2} => a ∈ ∅
1.Tìm STN a để các số sau nguyên tố cung nhau
a)4a+3 và 2a+3
b)7a+4 và 5a+6
c)8a+3 và 3a+1
d)6a+1 và 5a-3
e)9a+4 và 4a+3
g)5a+4 và 6a+5
h)9a+24 và 3a+4
i)7a+13 và 2a+4
2.Tìm STN a biết:
a)5a+1 chia hết cho 7
b)2a+9 chia hết cho 11
c)25a+3 chia hết cho 53
a; 4a + 3 và 2a + 3
Gọi ƯCLN(4a + 3; 2a + 3) = d
Theo bài ra ta có:
\(\left\{{}\begin{matrix}4a+3⋮d\\2a+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+3-4a-6⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\\left(4a-4a\right)+\left(2-6\right)⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4⋮d\end{matrix}\right.\) ⇒ d \(\in\) Ư(4) = {1; 2; 4}
Nếu d = 2 ⇒ 4a + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lý)
Nếu d = 4 ⇒ 4a + 3 ⋮ 4 ⇒ 3 ⋮ 4 (vô lý)
Vậy d = 1 ⇒ (4a + 3; 2a + 3) = 1
Hay 4a + 3 và 2a + 3 là hai số nguyên tố cùng nhau với mọi giá trị của a.