Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Trần Nhật Thanh
Xem chi tiết
Do Thai
10 tháng 2 2017 lúc 15:35

Cot A>3 

Thắng Nguyễn
11 tháng 2 2017 lúc 18:28

Khi \(\cot x\) là một hàm lồi trên \(\left(0,\frac{\pi}{2}\right)\), và \(A,B,C\in\left(0,\frac{\pi}{2}\right)\), ta có: 

\(\cot A+\cot B+\cot C\ge3\cot\left(\frac{A+B+C}{3}\right)=\sqrt{3}\)

Theo BĐT Jensen ta được ĐPCM 

Thắng Nguyễn
11 tháng 2 2017 lúc 18:43

Cách khác: 

Sử dụng đồng nhất thức ta có:

\(\tan A+\tan B+\tan C=\tan A\tan B\tan C\)

Vì vậy \(\cot A\cot B+\cot B\cot C+\cot C\cot A=1\) 

Và \(\left(\cot A-\cot B\right)^2+\left(\cot B-\cot C\right)^2+\left(\cot C-\cot A\right)^2\ge0\)

Vì vậy \(\cot^2A+\cot^2B+\cot^2C\ge1\)

Vì vậy \(\left(\cot A+\cot B+\cot C\right)^2=\cot^2A+\cot^2B+\cot^2C+2\left(\cot A\cot B+\cot B\cot C+\cot C\cot A\right)\ge3\)

Vậy \(\cot A+\cot B+\cot C\ge\sqrt{3}\)

Dấu "=" xảy ra khi \(\cot A=\cot B=\cot C\) (Cách này ko chắc 100% đúng)

tran lan vy
Xem chi tiết
Thắng Nguyễn
2 tháng 7 2017 lúc 11:45

Đùa tí :v, Ta có:

\(tanA+tanB+tanC=tanAtanBtanC\)

Vi` vay \(cotAcotB+cotBcotC+cotCcotA=1\)

Va` \(\left(cotA-cotB\right)^2+\left(cotB-cotC\right)^2+\left(cotC-cotA\right)^2\ge0\)

Vi` vay \(cot^2A+cot^2B+cot^2C\ge1\)

Then \(\left(cotA+cotB+cotC\right)^2=cot^2A+cot^2B+cot^2C+2\left(cotAcotB+cotBcotC+cotCcotA\right)\ge3\)

Nen \(cotA+cotB+cotC\ge\sqrt{3}\)

Xay ra khi \(cotA=cotB=cotC\)

Thắng Nguyễn
2 tháng 7 2017 lúc 9:20

\(cotx\) là hàm lồi trên \(\left(0;\frac{\pi}{2}\right)\) và \(A,B,C\in\left(0;\frac{\pi}{2}\right)\)

Thì theo BĐT Jensen ta có: 

\(cotA+cotB+cotC\ge3cot\left(\frac{A+B+C}{3}\right)=\sqrt{3}\)

Xong :v

chi chăm chỉ
Xem chi tiết
chi chăm chỉ
Xem chi tiết
nguyễn quỳnh lưu
Xem chi tiết
Mai Hương Lê Thị
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 7:27

A

Shin
Xem chi tiết
quynh tong ngoc
13 tháng 8 2016 lúc 14:59

vẽ hình thử xem mk ko vẽ dc hình

Le Nhat Phuong
8 tháng 7 2017 lúc 10:58

Cho hình vẽ

A G N B H D C M

Gọi G là trọng tâm của ABC 

Trước hết tìm cot B và cot C trong hình tam giác. Việc kẻ đường cao AH cho ta ngay kết quả; 

cot B + cot C \(=\frac{BH}{AH}+\frac{CH}{AH}=\frac{BC}{AH}\)

Lại nhận thấ \(AM\ge AH\)

Lưu ý; Do \(\frac{T}{C}\) là đường xiên lớn hơn đường vuông góc 

Hơn nữa dùng giả thiết \(BM\downarrow CN\) ta có \(GM=\frac{1}{2}BC\)

Như vậy \(BC=2GM=\frac{2AM}{3}\ge\frac{2AH}{3}v\Rightarrow cotB+cotC=\frac{BC}{AH}\ge\frac{2}{3}\)

Ashshin HTN
17 tháng 9 2018 lúc 15:01

làm bừa thui,ai trên 11 điểm tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 16:50

Áp dụng hệ quả của định lí sin và định lí cosin, ta có:

\(\frac{a}{{\sin A}} = 2R \Rightarrow \sin A = \frac{a}{{2R}}\)

và \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

\( \Rightarrow \cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\frac{a}{{2R}} = R.\frac{{{b^2} + {c^2} - {a^2}}}{{abc}}\)

Tương tự ta có: \(\cot B = R.\frac{{{a^2} + {c^2} - {b^2}}}{{abc}}\) và \(\cot C = R.\frac{{{a^2} + {b^2} - {c^2}}}{{abc}}\)

\(\begin{array}{l} \Rightarrow \cot A + \cot B + \cot C = \frac{R}{{abc}}\left[ {\left( {{b^2} + {c^2} - {a^2}} \right) + \left( {{a^2} + {c^2} - {b^2}} \right) + \left( {{a^2} + {b^2} - {c^2}} \right)} \right]\\ = \frac{R}{{abc}}\left( {2{b^2} + 2{c^2} + 2{a^2} - {a^2} - {c^2} - {b^2}} \right) = \frac{{R({a^2} + {b^2} + {c^2})}}{{abc}}\end{array}\)

Minh Đức
Xem chi tiết