:v
Tính: a) S = 2 + 2² + 2³ +....+2²⁰
B) A= 5+5²+5³+....+5⁹⁶
a- Cho A= 1+2+2^2+2^3+...+2^9 và B= 5*2^8. Hãy so sánh A và B
b- So sánh: A= 2/60*63+2/63*66+...+2/117*120+2/2003
B= 5/40*44+5/44*48+...+5/76*80+5/2003
b: \(A=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2003}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{2}{2003}\)
\(=2\left(\dfrac{1}{360}+\dfrac{1}{2003}\right)\)
\(B=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}\right)+\dfrac{5}{2003}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2003}\)
\(=5\left(\dfrac{1}{320}+\dfrac{1}{2003}\right)\)
Vì 1/360+1/2003<1/320+1/2003
nên A<B
so sánh A và B biết A=5^5/5+5^2+5^3+5^4
B =3^5/3+3^2+3^3+3^4
A= 2^2 + 2^3 + 2^4 + 2^5 +...+ 2^100
B= 3^2 + 3^4 + 3^6 + ...+ 3^100
C=5^1 + 5^3 + 5^5 + ... + 5^99
Tính TỔNG QUÁT: S= a + a^2 + a^3 + a^4 + ...+ a^n
So sánh A và B biết:
A= 2/60*63+2/63*66+.....+2/117.120+2/2003
B= 5/40*44+5/44*48+.....+5/76*80+5/2003
Ta co
+)A=2/60*63+2/63*66+...+2/117*120+2/2003
A*3/2=3/60*63+3/63*66+...+3/117*120+3/2003
A*3/2=1/60-1/63+1/63-1/66+...+1/117-1/120+3/2003
A*3/2=1/60-1/120+3/2003
A=(1/120+3/2003)*2/3
+)B=5/40*44+5/44*48+...+5/76*80+5/2003
B*4/5=4/40*44+4/44*48+...+4/76*80+4/2003
B*4/5=1/40-1/44+1/44-1/48+...+1/76-1/80+4/2003
B*4/5=1/40-1/80+4/2003
B=(1/80+4/2003)*5/4
Tu tren ta co A=(1/120+3/2003)*2/3
B=(1/80+4/2003)*5/4
Vay A<B(Vi 1/120<1/80;3/2003<4/2003;2/3<5/4)
+)A=2/60*63+2/63*66+...+2/117*120+2/2003
A*3/2=3/60*63+3/63*66+...+3/117*120+3/2003
A*3/2=1/60-1/63+1/63-1/66+...+1/117-1/120+3/2003
A*3/2=1/60-1/120+3/2003
A=(1/120+3/2003)*2/3
+)B=5/40*44+5/44*48+...+5/76*80+5/2003
B*4/5=4/40*44+4/44*48+...+4/76*80+4/2003
B*4/5=1/40-1/44+1/44-1/48+...+1/76-1/80+4/2003
B*4/5=1/40-1/80+4/2003
B=(1/80+4/2003)*5/4
Tu tren ta co A=(1/120+3/2003)*2/3
B=(1/80+4/2003)*5/4
Vay A<B(Vi 1/120<1/80;3/2003<4/2003;2/3<5/4)
C1:Ta co
+)A=2/60*63+2/63*66+...+2/117*120+2/2003
A*3/2=3/60*63+3/63*66+...+3/117*120+3/2003
A*3/2=1/60-1/63+1/63-1/66+...+1/117-1/120+3/2003
A*3/2=1/60-1/120+3/2003
A=(1/120+3/2003)*2/3
+)B=5/40*44+5/44*48+...+5/76*80+5/2003
B*4/5=4/40*44+4/44*48+...+4/76*80+4/2003
B*4/5=1/40-1/44+1/44-1/48+...+1/76-1/80+4/2003
B*4/5=1/40-1/80+4/2003
B=(1/80+4/2003)*5/4
Tu tren ta co A=(1/120+3/2003)*2/3
B=(1/80+4/2003)*5/4
Vay A<B(Vi 1/120<1/80;3/2003<4/2003;2/3<5/4)
C2:
b:
Vì 1/360+1/2003<1/320+1/2003
nên A<B
cho a^2+b^2+c^2=a^5+b^5+c^5=1. Tính S=a^2015+b^2015+c^2015
giúp mik vs các bạn
So sánh:
a) 321 và 231
b) A = \(\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và B = \(\dfrac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
a, Ta có: \(3^{21}>3^{20}\left(1\right)\)
\(2^{31}>2^{30}\)(2)
Mà \(\left\{{}\begin{matrix}3^{20}=3^{2.10}=\left(3^2\right)^{10}=9^{10}\\2^{30}=2^{3.10}=\left(2^3\right)^{10}=8^{10}\end{matrix}\right.\)
Do \(9>8\Rightarrow9^{10}>8^{10}\Rightarrow3^{20}>2^{30}\left(3\right)\)
Từ (1);(2) và (3) ta suy ra \(3^{21}>2^{31}\)
a)\(3^{21}=\left(3^2\right)^{10}.3=9^{10.3}\)
\(2^{31}=\left(2^3\right)^{10}.2=8^{10}.2\)
Vì \(9^{10}.3>8^{10}.2\Rightarrow3^{21}>2^{31}\)
b)\(A=\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)
\(A=\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}+\dfrac{5^9}{1+5+5^2+...+5^8}\)
\(A=1+\dfrac{5^9}{1+5+5^2+..+5^9}\)
A=\(1+1:\dfrac{1+5+5^2+...+5^9}{5^9}\)
\(A=1+1:\left(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+...+\dfrac{1}{5}\right)\)
Tương tự \(B=1+1:\left(\dfrac{1}{3^9}+\dfrac{1}{3^8}+\dfrac{1}{3^7}+...+\dfrac{1}{3}\right)\)
Vì \(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+....+\dfrac{1}{5}< \dfrac{1}{3^9}+\dfrac{1}{3^8}+...+\dfrac{1}{3}\)
\(\Rightarrow A>B\)
b, \(A=\dfrac{1+5+5^2+...+5^8+5^9}{1+5+5^2+...+5^8}\)\(=\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}+\dfrac{5^9}{1+5+5^2+...+5^8}\)
\(=1+\dfrac{5^9}{1+5+5^2+...+5^8}\)
\(B=\dfrac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
\(=\dfrac{1+3+3^2+...+3^8}{1+3+3^2+...+3^8}+\dfrac{3^9}{1+3+3^2+...+3^8}\)
Đặt \(C=\dfrac{5^9}{1+5+5^2+...+5^9}\) ; \(D=\dfrac{3^9}{1+3+3^2+...+3^9}\)
Ta lại có: \(\dfrac{1}{C}=\dfrac{1+5+5^2+...+5^9}{5^9}\)
\(=\dfrac{1}{5^9}+\dfrac{5}{5^9}+\dfrac{5^2}{5^9}+...+\dfrac{5^9}{5^9}\)
\(=\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+...+\dfrac{1}{5}\)
\(\dfrac{1}{D}=\dfrac{1+3+3^2+...+3^9}{3^9}\)
\(=\dfrac{1}{3^9}+\dfrac{3}{3^9}+\dfrac{3^2}{3^9}+...+\dfrac{3^9}{3^9}\)
\(=\dfrac{1}{3^9}+\dfrac{1}{3^8}+\dfrac{1}{3^7}+...+\dfrac{1}{3}\)
Vì \(\dfrac{1}{5^9}>\dfrac{1}{3^9};\dfrac{1}{5^8}>\dfrac{1}{3^8};....;\dfrac{1}{5}>\dfrac{1}{3}\)
\(\Rightarrow\dfrac{1}{5^9}+\dfrac{1}{5^8}+....+\dfrac{1}{5}>\dfrac{1}{3^9}+\dfrac{1}{3^8}+...+\dfrac{1}{3}\)
\(\Rightarrow\dfrac{1}{C}< \dfrac{1}{D}\Rightarrow C>D\Rightarrow1+C>1+D\)
Mà \(1+C=A;1+D=B\) \(\Rightarrow A>B\)
Vậy A>B
a) \(S=5+5^2+...+5^{2006}\)
\(5S=5^2+5^3+...+5^{2007}\)
\(5S-S=5^2+5^3+...+5^{2007}-5-5^2-...-5^{2006}\)
\(4S=5^{2007}-5\)
\(S=\dfrac{5^{2007}-5}{4}\)
b) Ta có:
\(S=5+5^2+...+5^{2006}\)
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2005}+5^{2006}\right)\)
\(S=\left(5+25\right)+5^2\cdot\left(5+25\right)+...+5^{2004}\cdot\left(5+25\right)\)
\(S=30+5^2\cdot30+...+5^{2004}\cdot30\)
\(S=30\cdot\left(1+5^2+...+5^{2004}\right)\)
Vậy: S ⋮ 30
1.Tính: A=3/5+3/5^4+3/5^7+...+3/5^100
2.Chứng minh rằng: 1/3+2/3^2+3/3^3+4/3^4+5/3^5+...+100/3^100<3/4
3. Tính: S=a+a^2+a^3+a^4+...a^2022
B=a-a^2+a^3-a^4+...-a^2022
giúp mk vs ak :3
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
So sánh A và B
A=7^10/1+7+7^2+....+7^9
B=5^10/1+5+5^2+....+5^9