Giải giúp em bài 3 đi ạ
ai giải giúp em từ 3 đến bài 12 với ạ em đang cần gấp chiều em đi thi ạ
Giúp em giải bài nay luôn đi ạ
giải giúp em bài 11 12 13 của bài 14 đi ạ
11.
\(=\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)
\(=\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(2-\sqrt{x})(\sqrt{x}+3)}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)
\(=\frac{x-9}{(2-\sqrt{x})(\sqrt{x}+3)}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)
\(=\frac{\sqrt{x}-2}{3+\sqrt{x}}\)
12.
\(=\frac{(3-\sqrt{x})(3\sqrt{x}-2)+(5\sqrt{x}+7)(3\sqrt{x}+4)}{(5\sqrt{x}+7)(3\sqrt{x}-2)}-\frac{42\sqrt{x}+34}{(5\sqrt{x}+7)(3\sqrt{x}-2)}\)
\(=\frac{12x+52\sqrt{x}+22}{(5\sqrt{x}+7)(3\sqrt{x}-2)}-\frac{42\sqrt{x}+34}{(5\sqrt{x}+7)(3\sqrt{x}-2)}\)
\(=\frac{12x+10\sqrt{x}-12}{(5\sqrt{x}+7)(3\sqrt{x}-2)}=\frac{2(3\sqrt{x}-2)(2\sqrt{x}+3)}{(5\sqrt{x}+7)(3\sqrt{x}-2)}=\frac{2(2\sqrt{x}+3)}{5\sqrt{x}+7}\)
13.
\(=\frac{(\sqrt{x}+2)(2\sqrt{x}-3)+(3\sqrt{x}-4)(-\sqrt{x}+2)}{(-\sqrt{x}+2)(2\sqrt{x}-3)}+\frac{-7\sqrt{x}+10}{(-\sqrt{x}+2)(2\sqrt{x}-3)}\)
\(=\frac{-x+11\sqrt{x}-14}{(-\sqrt{x}+2)(2\sqrt{x}-3)}+\frac{-7\sqrt{x}+10}{(-\sqrt{x}+2)(2\sqrt{x}-3)}\)
\(=\frac{-x+4\sqrt{x}-4}{(-\sqrt{x}+2)(2\sqrt{x}-3)}=\frac{-(\sqrt{x}-2)^2}{-(\sqrt{x}-2)(2\sqrt{x}-3)}=\frac{\sqrt{x}-2}{2\sqrt{x}-3}\)
Giải giúp em bài 8 9 10 đi ạ
Bài 8.9.10 của câu 14 hay 15 bạn?
Câu 15:
1: Ta có: \(\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{1+\sqrt{2}}\)
\(=\dfrac{1+\sqrt{2}-1+\sqrt{2}}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}\)
\(=-2\sqrt{2}\)
2: Ta có: \(\dfrac{1}{\sqrt{5}+1}+\dfrac{1}{\sqrt{5}-1}\)
\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\dfrac{2\sqrt{5}}{4}=\dfrac{\sqrt{5}}{2}\)
Câu 14:
8: Ta có: \(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-2x+4\sqrt{x}+\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}-2}\)
9: Ta có: \(\dfrac{3\sqrt{x}+2}{2\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+4}-\dfrac{x-6\sqrt{x}+5}{2x-7\sqrt{x}-4}\)
\(=\dfrac{\left(3\sqrt{x}+2\right)\left(\sqrt{x}+4\right)}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\dfrac{x-6\sqrt{x}+5}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\dfrac{3x+12\sqrt{x}+2\sqrt{x}+8+2x-\sqrt{x}-2\sqrt{x}+1-x+6\sqrt{x}-5}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\dfrac{4x+20\sqrt{x}+4}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
Giải giúp em bài 3 với ạ em cảm ơn ạ
a.
\(n_S=\dfrac{16}{32}=0,5mol\)
Gọi \(\left\{{}\begin{matrix}n_{Zn}=x\\n_{Mg}=y\end{matrix}\right.\)
\(Zn+S\rightarrow\left(t^o\right)ZnS\)
x x ( mol )
\(Mg+S\rightarrow\left(t^o\right)MgS\)
y y ( mol )
Ta có:
\(\left\{{}\begin{matrix}65x+24y=23,4\\x+y=0,5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{57}{205}\\y=\dfrac{91}{410}\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}m_{Zn}=\dfrac{57}{205}.65=\dfrac{741}{41}g\\m_{Mg}=\dfrac{91}{410}.24=\dfrac{1092}{205}g\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}\%m_{Zn}=\dfrac{741}{41}:23,4.100=77,23\%\\\%m_{Mg}=100\%-77,23\%=22,77\%\end{matrix}\right.\)
b.\(ZnS+2HCl\rightarrow ZnCl_2+H_2S\)
57/205 57/205 ( mol )
\(MgS+2HCl\rightarrow MgCl_2+H_2S\)
91/410 91/410 ( mol )
\(V_{H_2S}=\left(\dfrac{57}{205}+\dfrac{91}{410}\right).22,4=11,2l\)
Alo cao nhân nào giải giúp em bài này ạ :3 (Giải câu 1;2 hộ em ạ )
1.1
Pt có 2 nghiệm trái dấu và tổng 2 nghiệm bằng -3 khi:
\(\left\{{}\begin{matrix}ac< 0\\x_1+x_2=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2\right)< 0\\\dfrac{2m+1}{m+2}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m=-\dfrac{7}{5}\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
b.
Pt có nghiệm kép khi:
\(\left\{{}\begin{matrix}m+2\ne0\\\Delta=\left(2m+1\right)^2-8\left(m+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)
giải giúp e bài 1 câu 3 giải pt đi ạ
Bài 1:
3: ĐKXĐ: x>=1
\(x-\sqrt{x+3+4\sqrt{x-1}}=1\)
=>\(x-\sqrt{x-1+2\cdot\sqrt{x-1}\cdot2+4}=1\)
=>\(x-\sqrt{\left(\sqrt{x-1}+2\right)^2}=1\)
=>\(x-\left|\sqrt{x-1}+2\right|=1\)
=>\(x-\left(\sqrt{x-1}+2\right)=1\)
=>\(x-\sqrt{x-1}-2-1=0\)
=>\(x-1-\sqrt{x-1}-2=0\)
=>\(\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}+\sqrt{x-1}-2=0\)
=>\(\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}+1\right)=0\)
=>\(\sqrt{x-1}-2=0\)
=>\(\sqrt{x-1}=2\)
=>x-1=4
=>x=5(nhận)
em cần giải gấp bài 3 chi tiết mọi người giúp em với ạ. Làm bài dưới dạng phân số ạ em cần gấp
Gọi số sản phẩm àm 2 ng công nhân được giao là x (x∈N*, sản phẩm)
Thời gian hoàn thành công việc của người thứ nhất là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian hoàn thành công việc của ngươi thứ hai là: \(\dfrac{x}{50}\left(h\right)\)
Vì ng thứ nhất hoàn thành công việc chậm hơn người thứ hai 2 giờ nên ta có PT:
\(\dfrac{x}{40}-\dfrac{x}{50}=2\)
⇔\(50x-40x=4000\)
⇔\(10x=4000\)
⇔\(x=400\)
Vậy số sản phẩm mỗi công nhân được giao là 400 (sản phẩm)
Giúp em làm bài 3 với bài 5 đi ạ
Câu 3:
b, PT hoành độ giao điểm (d1) và (d2) là
\(2x+1=\dfrac{1}{3}x\Leftrightarrow\dfrac{5}{3}x=-1\Leftrightarrow x=-\dfrac{3}{5}\Leftrightarrow y=-\dfrac{3}{5}\cdot\dfrac{1}{3}=-\dfrac{1}{5}\\ \Leftrightarrow A\left(-\dfrac{3}{5};-\dfrac{1}{5}\right)\)
Vậy \(A\left(-\dfrac{3}{5};-\dfrac{1}{5}\right)\) là giao điểm của 2 đths
Bài 5:
Gọi chân đường cao từ A đến BC là H
Ta có \(OA=CH=1,1\left(m\right);AH=1,6\left(m\right)\)
Áp dụng HTL: \(BH=\dfrac{AH^2}{CH}=\dfrac{128}{55}\left(m\right)\)
Do đó chiều cao tường là \(BC=BH+HC=\dfrac{377}{110}\approx3,4\left(m\right)\)