TÌM X,Y,Z BIẾT :2X=3Y=5Z VÀ X-Y+Z=-33
AI NHANH MINK TÍCK NHÉ
PHẢI NHANH
1. Tìm các số hữu tỉ x,y,z biết:
a) 2x=3y=7z và x+y-z= 58
b) 2x=3y=5zvà x+y-z= -190
c) 3x=2y,7y=5zvà x-y=z= 32
d) x−12 =y−23 =z−34 và x-2y=3z= -10
a) 2x = 3y =7z và x+y-z =58
\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\frac{x}{21}=2\Rightarrow x=21\cdot2=42\)
\(\frac{y}{14}=2\Rightarrow y=14\cdot2=28\)
\(\frac{z}{6}=2\Rightarrow z=6\cdot2=12\)
1. Tìm các số hữu tỉ x,y,z biết:
a) \(2x=3y=7z\) và x+y-z= 58
b) \(2x=3y=5z\)và x+y-z= -190
c) \(3x=2y,7y=5z\)và x-y=z= 32
d) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y=3z= -10
e) \(x(x+y+z)=-12;y(y+z+x)=18;z(z+x+y)=30\)
1. Tìm các số hữu tỉ x,y,z biết:
a) \(2x=3y=7z\)và x+y-z=58
b) \(2x=3y=5z\)và x+y-z=-190
c) \(3x=2y,7y=5z\)và x-y+z=32
d) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z= -10
e) \(x(x+y+z)=-12;y(y+z+x)=18;z(z+x+y)=30\)
Tìm x, y, z biết:
a) 3x = 2y; 7x = 5z và x-y+z=32
b)\(\frac{2x}{3}\)= \(\frac{3y}{4}=\frac{4z}{5}\) và x+y+z= 49
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)và 2x+ 3y- z= 50
\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)
Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)
các câu còn lại lm tương tự nhé
\(a,3x=2y=>\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)(1)
\(7x=5z=>\frac{x}{5}=\frac{z}{7}=>\frac{x}{10}=\frac{z}{14}\)(2)
Từ 1 và 2 \(=>\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\)
Áp dụng tc của dãy tỉ số bằng nhau :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(=>\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}=>9x=320=>x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}=>9y=480=>y=\frac{480}{9}\\\frac{z}{14}=\frac{32}{9}=>9z=448=>z=\frac{448}{9}\end{cases}}\)
Vậy ,,,
Tìm x,y,z biết:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và 2x2 + 3y2 - 5z2 = -405
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}->\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
->\(\frac{2x^2}{8}=\frac{3y^2}{27}=\frac{5z^2}{80}\) và 2x2+3y2-5x2=-405
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{2x^2}{8}=\frac{3y^2}{27}=\frac{5z^2}{80}=\frac{2x^2+3y^2-5z^2}{8+27-80}=-\frac{405}{-45}=9\)
Do đó, *)x2/4=9 => x2=9*4=36
=> x=6 hoặc x=-6
*)y2/9=9 => x2=9*9=81
=> y=9 hoặc y=-9
*)z2/16=9 => z2=9*16=144
=> z=12 hoặc z=-12
Vậy x=6; y=9 ; z=12 hoặc x=-6;y=-9;z=-12
chịu thui
chuc bn hoc tốt nha!
nhae$Demngayxaem
nhaE
hihi
____________________________
Tìm x,y,z biết 2x =3y , 4y =5z và x+y-z= 78
Bài toán :
Kết quả: Giải hệ phương trình
Tìm x,y,z biết 2x = 3y , 4y = 5z và x+y-z= 78
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}\\ 4y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{10}=\dfrac{z}{8}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{x+y-z}{15+10-8}=\dfrac{78}{17}\\ \Rightarrow x=\dfrac{78}{17}.15=...\\ y=\dfrac{78}{17}.10=\dfrac{780}{17}\\ z=\dfrac{78}{10}.8=...\)
a,Tìm x;y thuộc Z biết: x.y + 2x - y = 5
b,Tìm x;y;z biết : 2.x = 3.y; 4.y = 5.z và 4.x - 3.y + 5z=7
Giúp mk vs,mk duyệt hết lun!!!!!!!!!!!!
a)=>x(y+2)-(y+2)=3
=>(y+2)(x-1)=3
Vì x,y thuộc Z nên y+2 và x-1 thuộc Ư(3)={+1;+3;-1;-3}
Sau đó thay lần lượt các cặp -1 với -3 và 1 với 3
tìm x,y,z biết: 3x=4y=5z và 2x+y=z-43