Chứng tỏ S chia hết cho 10
2 nhân S =1+3+3 mũ 2+3 mũ 3+...+3 mũ 11
Cho S = 1+3+3 mũ 2 + 3 mũ 3+ 3 mũ 4+ 3 mũ 5+ 3 mũ 6+ 3 mũ 7+ 3 mũ 8+ 3 mũ 9.Chứng tỏ rằng S chia hết cho 4
b) chứng minh rằng hiệu abc - cba chia hết cho 11 (với a>c)
1)cho S=5 +5 mũ 2+5 mũ 3 +......+5 mũ 96
Chứng tỏ rằng S chia hết cho 126
Tìm cs tận cùng của S
2) Chứng tỏ rằng 16 mũ 2008-8 mũ 2000:10
3) Tìm x biết
a)1 mũ 3+2 mũ 3 +3 mũ 3+....+10 mũ 3 =(x+1 mũ 2)tất cả mũ 2
1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)
S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)
S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)
S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) + ... + 593.(1 + 53)
S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126
S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126
+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2
=> S chia hết cho 10 => S có tận cùng là 0
2) 162008 - 82000
= (...6) - (84)500
= (...6) - (...6)500
= (...6) - (...6)
= (...0) chia hết cho 10
3) 13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 = (x + 12)2
=> 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = (x + 1)2
=> (1 + 729) + (8 + 512) + (27 + 343) + (64 + 216) + 125 + 1000 = (x + 1)2
=> 730 + 520 + 370 + 280 + 1125 = (x + 1)2
=> (730 + 370) + (520 + 280) + 1125 = (x + 1)2
=> 1100 + 800 + 1125 = (x + 1)2
=> 3025 = (x + 1)2, vô lí
1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)
S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)
S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)
S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) + ... + 593.(1 + 53)
S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126
S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126
+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2
=> S chia hết cho 10 => S có tận cùng là 0
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
Cho tổng S=1+3+3 mũ 2+3 mũ 3 + 3 mũ 4+... + 3 mũ19+ 3 mũ 20
Chứng tỏ S chia hết cho 13
Số số hạng của S:
20 - 0 + 1 = 21 (số)
Do 21 ⋮ 3 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
S = (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3¹⁸ + 3¹⁹ + 3²⁰)
= 13 + 3³.(1 + 3 + 3²) + ... + 3¹⁸.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3¹⁸.13
= 13.(1 + 3³ + ... + 3¹⁸) ⋮ 13
Vậy S ⋮ 13
S= 1+3+32+33+34+...+319+320
S= (1+3+32) + (33+34+35) + ... + (318+319+320)
S= 13.1+ 32.(1+3+32) + 317.(1+3+32)
S= 13.1+32.13+317.13
S= 13.(1+32+317) \(⋮\) 13
S\(⋮\) 13
Vậy S\(⋮\) 13
cho s=1+3+3 mũ 2+3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 + 3 mũ 7+ 3 mũ 8 + 3 mũ 9.Chứng tỏ S chia hết cho 4
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36.(1 + 3) + 38.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)
cho s=1+3+3 mũ 2+3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 + 3 mũ 7+ 3 mũ 8 + 3 mũ 9.Chứng tỏ S chia hết cho 4
Cho S =2 mũ 1+2 mũ 2+2 mũ 3+...+2 mũ 100 . Hãy chứng tỏ S chia hết cho 3 và 15?
Nhanh nha
\(S=2+2^2+2^3+...+2^{100}\)
\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{99}+2^{100}\right)\)
\(S=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{99}\left(1+2\right)\)
\(S=2\cdot3+2^3\cdot3+....+2^{99}\cdot3\)
\(S=3\left(2+2^3+....+2^{99}\right)\)
\(\Rightarrow S⋮3\left(đpcm\right)\)
S có 100 lũy thừa cơ số 2, ta nhóm thành 50 cặp, mỗi cặp hai lũy thừa liền nhau
S = (2 + 2^2) + (2^3+ 2^4) + .......... + (2^99 + 2^100)
S = 2(1 +2) + 2^3(1 + 2) + ........... + 2^99(1+2)
S = 2.3 + 2^3.3 + .................. +2^99.3 (đặt thừa số chung)
các số hạng của S chia hết cho 3 => S chia hết cho 3
Tương tự cách trên nhưng bạn nhóm thành 25 cặp, mỗi cặp 4 lũy thừa cơ số 2 thì được kết quả chia hết cho 15
Sau khi đặt thừa số chung bạn thấy tổng này 1 + 2 + 2^2 + 2^3 = 15
=> S chia hết cho 15
\(S=2+2^2+2^3+...+2^{100}\)
\(S=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)
\(S=\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(S=6+...+2^{98}.6\)
\(S=6\left(1+..+2^{98}\right)\)
\(\Rightarrow S⋮3\)