tìm dư trong phép chia đa thức f(x)=(x+1)(x+3)(x+5)(x+7)+2002 cho đa thức g(x)=x2+8x+12
tìm dư của phép chia đa thức f(x)=(x+1)(x+3)(x+5)(x+7)+2003 cho đa thức x^2+8x+12 ?
Tìm số dư trong phép chia đa thức f(x) cho đa thức g(x)
a) f(x) = x⁴ – 5x³ + 2x – 10. g(x) = x – 5
b) f(x) = 8x² – 6x + 5. g(x) = 2x – 1
\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)
Tìm số dư trong phép chia đa thức f(x) cho đa thức g(x)
a) f(x) = x⁴ – 5x³ + 2x – 10. g(x) = x – 5
b) f(x) = 8x² – 6x + 5. g(x) = 2x – 1
b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)
Biết đa thức f(x) chia cho x-3 dư 7, chia cho x-2 dư 5. Tìm đa thức dư trong phép chia đa thức f(x) cho x^2-5x+6
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\) và dư \(ax+b\)
=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)
Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5
=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1
Giả sử đa thức bị chia là m (x)
Gia sử thương là : q( x )
Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1
Suy ra , ta có : m( x ) =( x2 - 5x + 6 ) q( x ) = ax + b
Đi tìm X
x2 - 5x + 6 = 0
x2 - 2x - 3x + 6 = 0
x( x - 2) - 3(x - 2) = 0
( x - 2)( x - 3) = 0
Vậy x = 2 hoặc x = 3
Ta có giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :
f( 2 ) = 5
-> 2a + b = 5 ( 1)
Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó ta được :
f( 3 ) = 7
-> 3a + b = 7 ( 2)
Từ ( 1 và 2) suy ra : a = 2 ; b = 1
Suy ra : f( x ) = ( x2 - 5x + 6 ) Thay số q( x ) = 2x + 1
Vậy dư là 2x +1
tìm số dư trong phép chia đa thức (x+1)(x+3)(x+5)(x+7)+9cho x^2+8x+12
\(q\left(x\right)=x^2+8x+12=0\Leftrightarrow\left(x+2\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-6\end{cases}}\)
\(f\left(x\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)
\(f\left(x\right)=q\left(x\right)p\left(x\right)+ax+b\)
suy ra
\(\hept{\begin{cases}f\left(-2\right)=-2a+b\\f\left(-6\right)=-6a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}-2a+b=-6\\-6a+b=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-6\end{cases}}\)
Vậy số dư cần tìm là \(-6\).
biết đa thức f(x) chia cho đa thức x-2 dư 7 , chia cho đa thức x2+1 dư 3x+5 . Tìm dư trong phép chia đa thức f(x) cho đa thức (x2+1)(x-2)
đơn giản thì trả lời đi , fly color à bạn :)))
Tìm dư của phép chia đa thức f(x) cho (x2 +1) (x-2) biết f(x) (chia x-2) dư 7 và f(x) : (x2 +1) dư 3x+5
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?
Bài 1) biết x thuộc z tìm số dư của phép chia
(x+1)(x+3)(x+5)(x+7)+1999 chia cho(x^2+8x+12)
Bài2) đa thức f(x) chia cho x-2 thì dư 5 chia cho x-3 thi dư 7 còn khi chia cho (x-2)(x-3) thì được thương và còn dư.Tìm đa thức f(x)
Mn giúp mình với ,,,ít nữa mình phải đi học rồi
bó tay dù sao mk cũng muốn bạn tick cho mk nha
1. Tìm đa thức dư trong phép chia đa thức f(x) với đa thức g(x).
f(x) = \(x^{93}+x^{48}+x^{20}+x^4-x\) và g(x) = \(x^2-1\)
2. Tính:
B= \(x^{15}-8x^{14}+8x^{13}-8x^{12}+....-8x^2+8x-5\) với x = 7
Mình đang cần lời giải (chi tiết). Xin hãy giúp mình. Cảm ơn nhiều
chiu roi
bAN oi
tk nhe!!!!!!!!!!
ai tk minh minh tk lai!!