Tìm các số nguyên \(x,y\) thỏa mãn: \(x^3+2x^2+3x+2=y^3\)
tìm các số nguyên x y thỏa mãn x^3+2x^2+3x+2=y^3
Tìm các số nguyên x , y thỏa mãn x3 + 2x2 + 3x + 2 = y3 .
Tìm các số nguyên x,y thỏa mãn \(x^3+2x^2+3x+2=y^3\)
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
1. Tìm các số nguyên x, y thỏa mãn: $x^3+2x^2+3x+2=y^3$x3+2x2+3x+2=y3
x3+2x2+3x+2=y3
Với [x>1x<−1] ta có: x3<x3+2x2+3x+2<(x+1)3⇒x3<y3<(x+1)3 (không xảy ra)
Từ đây suy ra −1≤x≤1
Mà x∈Z⇒x∈{−1;0;1}
∙ Với x=−1⇒y=0
∙ Với x=0⇒y=2√3 (không thỏa mãn)
∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)
Tìm các cặp số nguyên (x,y) thỏa mãn: \(x^3-2x^2+3x=y^3+1\)
Phương trình cho \(\Leftrightarrow x^3-2x^2+3x-y^3-1=0\)(1)
\(\Leftrightarrow y^3=x^3-2x^2+3x-1\)(2)
Ta có: \(\left(x-1\right)^3=x^3-3x^2+3x-1\le x^3-2x^2+3x-1=y^3\)(Do \(3x^2\ge2x^2\ge0\))
Lại có: \(\left(x+1\right)^3=x^3+3x^2+3x+1=\left(x^3-2x^2+3x-1\right)+5x^2+2>y^3\)
Do đó: \(\left(x-1\right)^3\le y^3< \left(x+1\right)^3\Rightarrow x-1\le y< x+1\)
Mà y thuộc Z nên \(\orbr{\begin{cases}y=x\\y=x-1\end{cases}}\)
+) Với y=x, thay vào (1) ta được: \(-2x^2+3x-1=0\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\left(l\right)\end{cases}}\)\(\Rightarrow x=y=1\)
+) Với y = x-1; thay vào (2), ta được:
\(x^3-2x^2+3x-1=\left(x-1\right)^3\Leftrightarrow x^2=0\Rightarrow x=0\)\(\Rightarrow y=-1\)
Vậy các cặp nghiệm nguyên t/m pt cho là \(\left(x;y\right)\in\left\{\left(1;1\right);\left(0;-1\right)\right\}.\)
Tìm các số nguyên x,y thỏa mãn: \(x^3+2x^2+3x+2=y^3\)
Tìm các số nguyên x y thỏa mãn:
x3 + 2x2 + 3x + 2 = y3
Với \(\left[x>1x< -1\right]\)ta có \(x3< x3+2x2+3x+2< \left(x+1\right)3\Rightarrow x3< y3< \left(x+1\right)3\)Không xảy ra
Từ đây suy ra:\(-1\le x\le1\)
Mà \(x\in Z\Rightarrow x\in\){1,0,-1}
-Với x = -1 thì y = 0
-Với x = 0 thì y = \(2\sqrt{3}\)(loại)
-Với x= 1 thì y = 2
Vậy phương trình có 2 nghiệm nguyên (x;y) là {-1;0 và 1;2}
tìm x,y nguyên thỏa mãn: x^3 + 2x^2 + 3x + 2 = y^3
Với [x>1x<−1] ta có: x^3< x^3+2x^2+3x+2<(x+1)^3⇒x^3<y^3<(x+1)^3 (không xảy ra)
Từ đây suy ra −1≤ x ≤1
Mà x ∈ Z ⇒x ∈ {−1;0;1}
∙∙ Với x=−1⇒y=0
∙∙ Với x=0⇒y= căn bậc 3 của 2 (không thỏa mãn)
∙∙ Với x=1 ⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)
Xét \(2x^2+3x+2=2\left(x^2+\frac{3}{4}\right)^2+\frac{7}{16}>0\forall x\)
\(\Rightarrow x^3< y^3\left(1\right)\)
Giả sử:\(y^3< \left(x+2\right)^3\)
\(\Leftrightarrow x^3+2x^2+3x+2< x^3+6x^2+12x+8\)
\(\Leftrightarrow-4x^2-9x-6< 0\)
Mai lm tiếp
Lm tiếp nè:
\(\Leftrightarrow4x^2+9x+6>0\)
\(\Leftrightarrow4\left(x+\frac{9}{8}\right)^2+\frac{15}{64}>0\)
=>Gs đúng
\(\Rightarrow y^3< \left(x+2\right)^3\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow y^3=\left(x+1\right)^3\)
\(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^2+3x+1\)
\(\Leftrightarrow x^2=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2\\y=0\end{cases}}}\)
Vậy....