cho tam giác vuông ABC vuông tại A đcao AH=24cm đường phân giác AD, HC-HB=14cm tính BD và AD
Cho tam giác vuông ABC (góc A= 90 độ), đường cao AH , đường phân giác AD .Biết AH=24cm, HC-HB=14cm . Tính BD và DA
có: HC . HB = AH\(^2\) = 576 trong tam giác vuông đường cao ứng với cạnh huyền bằng tích hình chiếu 2 cạnh góc vuông trên cạnh huyền) (1)
mà HC - HB = 14 => HC = 14 + HB
thay vào (1): HC . HB = (14 + HB) . HB = HB\(^2\) + 14HB = 576
=> HB\(^2\) + 14HB - 576 = 0 => (HB - 18) (HB + 32) = 0 => HB = 18 cm
=> HC = 14 + 18 = 32 cm => BC = 18 + 32 = 50
=> AB\(^2\) = BH . BC = 18 . 50 = 900 => AB = 30 cm
=> AC\(^2\) = CH . BC = 32 . 50 = 1600 => AC = 40 cm
Có: BD/DC = AB/AC => BD/AB = DC/AC và BD + DC = 50
áp dụng tính chất dãy tỉ số bằng nhau đc:
AB/BD = AC/DC = AB+AC/BD+CD = 70/50 = 7/5
=> BD = 5 . AB = 5 . 30 : 7 = 150/7 cm=> CD = 50 - 150/7 = 200/7 cm
=> HD = 50 - CD - BH = 50 - 200/7 - 18 = 24/7 cm
Xét tam giác vuông ADH:
AD\(^2\) = AH\(^2\) + DH\(^2\) = 24\(^2\) + (24/7)\(^2\)
=> AD = \(\sqrt{24^2+\left(\frac{24}{7}\right)^2\approx24,244}cm\)tam giác ABC vuông tại A, đường cao AH, đường phân giác AD, biết AH= 24cm, HC-HB= 14 cm. tính BD,AD
có: HC . HB = AH2 = 576 trong tam giác vuông đường cao ứng với cạnh huyền bằng tích hình chiếu 2 cạnh góc vuông trên cạnh huyền) (1)
mà HC - HB = 14 => HC = 14 + HB
thay vào (1): HC . HB = (14 + HB) . HB = HB2 + 14HB = 576
=> HB2 + 14HB - 576 = 0 => (HB - 18) (HB + 32) = 0 => HB = 18 cm
=> HC = 14 + 18 = 32 cm => BC = 18 + 32 = 50
=> AB2 = BH . BC = 18 . 50 = 900 => AB = 30 cm
=> AC2 = CH . BC = 32 . 50 = 1600 => AC = 40 cm
Có: BD/DC = AB/AC => BD/AB = DC/AC và BD + DC = 50
áp dụng tính chất dãy tỉ số bằng nhau đc:
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+CD}{AB+AC}=\frac{50}{70}=\frac{5}{7}\)
=> BD = 5 . AB = 5 . 30 : 7 = 150/7 cm=> CD = 50 - 150/7 = 200/7 cm
=> HD = 50 - CD - BH = 50 - 200/7 - 18 = 24/7 cm
xét tam giác vuông ADH:
AD2 = AH2 + DH2 = 242 + (24/7)2
=> AD = \(\sqrt{24^2+\left(\frac{24}{7}\right)^2}\approx24,244\)cmTa có: HB.HC=AH^2=24^2=576.
Biết được tích HB.HC là 576, hiệu HC-HB là 14(theo đầu bài)thì tính được BC=HB+HC
(HC+HB)^2=(HC-HB)^2+4.HC.HB (cái này bạn khai triển ra là thấy)=14^2+4.576 =2500
=> HC+HB=căn(2500)=50=>BC=50=>BD+DC=50( vì BD+DC=BC)
HC+HB=50 mà HC-HB=14=> HC=32 và HB=18( tính hai số biết tổng và hiệu)
Biết được tổng BD+DC, để tính được BD, ta đi tính tỉ số BD/DC:
BD/DC=AB/AC ( vì AD là phân giác của tam giác ABC)=>BD=150/7
=>HD=BD-HB=150/7-18=24/7.
Áp dụng định lý py-ta-go vào tam giác vuông AHD ta có:
AD^2=AH^2+HD^2=24^2+(24/7)^2=28800/49
=>AD=căn(28800/49) sấp sỉ 24,244.
Mình không vẽ hình ra, bạn tự nhìn hình của bạn nhé.
Trong sgk lớp 9, tập một, phần hình học ở bài 1 có mấy cái định lý, bạn chú ý vào định lý 2: Trong một tam giác vuông, bình phương của đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền. Trong bài này, đường cao là AH, hình chiếu của hai cạnh góc vuông trên cạnh huyền là HB và HC nên ta có: HB.HC=AH^2=24^2=576.
Biết được tích HB.HC là 576, hiệu HC-HB là 14(theo đầu bài)thì tính được BC=HB+HC
(HC+HB)^2=(HC-HB)^2+4.HC.HB (cái này bạn khai triển ra là thấy)=14^2+4.576 =2500
=> HC+HB=căn(2500)=50=>BC=50=>BD+DC=50( vì BD+DC=BC)
HC+HB=50 mà HC-HB=14=> HC=32 và HB=18( tính hai số biết tổng và hiệu)
Biết được tổng BD+DC, để tính được BD, ta đi tính tỉ số BD/DC:
BD/DC=AB/AC ( vì AD là phân giác của tam giác ABC)=>BD=150/7
=>HD=BD-HB=150/7-18=24/7.
Áp dụng định lý py-ta-go vào tam giác vuông AHD ta có:
AD^2=AH^2+HD^2=24^2+(24/7)^2=28800/49
=>AD=căn(28800/49) sấp sỉ 24,244.
Đáp số: AD sấp sỉ 24,244
BD=150/7
cho tam giác vuông ABC ( góc A = 90 độ ), đường cao AH , đường phân giác AD. biết AH=24 cm , HC-HB=14cm. tính BD và DA
bạn bấm vào chữ'' đúng 0'' sẽ hiện ra đáp án
Câu hỏi của Vũ Kim Ngân - Toán lớp 9 - Học toán với OnlineMath
Cho tam giác ABC vuông ở A. Đường cao AH, phân giác AD. Biết AH = 24 cm, HC - HB =14cm. Tính DB,DA
Câu hỏi của Vũ Kim Ngân - Toán lớp 9 - Học toán với OnlineMath.
Em tham khảo bài của bạn TRần Tuyết Như nhé!
cho tam giác abc vuông tại a đường cao ah, phân giác AD; AH=6cm; HB=4cm
a) tính HC ,BC, AB ,AC
b) tính BD, CD
Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD= 15 cm, CD= 20 cm. Tính HB, HC
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}HC\)
Ta có: \(HB+HC=BC\)
\(\Leftrightarrow HC\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow HC=22.4\left(cm\right)\)
\(\Leftrightarrow HB=12.6\left(cm\right)\)
Cho tam giác ABC vuông tại A phân giác AD đường cao AH. Cho biết BD=15cm, CD=20cm. Tính độ dài các đoạn thẳng HB và HC
Ta có \(BC=BD+CD=35\left(cm\right)\)
Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}CD\)
Áp dụng PTG: \(BC^2=1225=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)
\(\Rightarrow AC^2=784\Rightarrow AC=28\left(cm\right)\\ \Rightarrow AB=\dfrac{3}{4}\cdot28=21\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=12,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=22,4\left(cm\right)\end{matrix}\right.\)
CHo tam giác ABC vuông tại A, đường cao AH, đường phân giác AD chia cạnh đối diện BC thành hai đoạn thẳng BD=36cm, CD=60cm.Tìm tỉ số \(\dfrac{HB}{HC}\)và tính AH
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AB}{AC}=\dfrac{3}{5}\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{5}\)
nên \(AB=\dfrac{3}{5}AC\)
Ta có: BD+CD=BC(D nằm giữa B và C)
nên BC=36+60=96(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\left(\dfrac{3}{5}AC\right)^2+AC^2=96\)
\(\Leftrightarrow\dfrac{34}{25}AC^2=96\)
\(\Leftrightarrow AC^2=\dfrac{1200}{17}\)
\(\Leftrightarrow AB=\dfrac{3}{5}AC=\dfrac{3}{5}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{12\sqrt{51}}{17}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC nên
\(\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{432}{17}:\dfrac{1200}{17}=\dfrac{432}{1200}=\dfrac{9}{25}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot96=\dfrac{12\sqrt{51}}{17}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{720}{17}\)
hay \(AH=\dfrac{15}{34}\left(cm\right)\)
Giúp mình với ak!!!!
1. Cho tam giác ABC vuông tại A, biết AB/AC=5/7 và đường cao AH=15cm. Tính HB, HC.
2. Cho tam giác ABC vuông tại A, có đường cao AH=14cm và HB/HC=1/4. Tính chu vi tam giác ABC.
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)