cho hình thang cân abcd (ab//cd), biết AB=26cm,CD=10cm và đường chéo AC⊥BC.Tính S ABCD
Cho hình thag cân ABCD ( AB// CD) biết AB= 26cm CD=10cm và đường chéo AC vuông góc với BC. Tính diện tích hình thang ABCD ?
2 đg chéo vuông góc vói nhau=>là hcn
dt hcn =dt ht cân
26x10=260 cm2
đ/s: 260 cm2
Ai tích mk mk sẽ tích lại
Cho hình thang cân ABCD (AB//CD) biết AB=26cm, AD=10cm và đường chéo AC vuông góc với cạnh bên BC. Tính diện tích của hình thang ABCD
Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!
Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.
Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:
$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$
Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:
$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)
⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$
⇒ $\(CH=DK=\dfrac{120}{13}\)$
Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:
$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$
Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$
Cho hình thang ABCD có AB//CD. Biết AB=26cm; CD=10cm và đường chéo AC vuông góc với cạnh bên BC. Tính diện tích hình thang ABCD.
Giải ra giúp mình
Cho hình thang ABCD (AC//AD). Biết AB⊥AD và AB=10cm, CD=26cm. Tính diện tích hình thang cân ABCD
Câu 1: Cho hình thang cân ABCD (AB//CD), AB=26cm , CD=10cm . AC vuông góc với BC. Tính diện tích hình thang đó.
Câu 2: Một hình thang cân có đường chéo vuông góc với cạnh bên. Tính chu vi và diện tích hình thang đó, biết rằng đáy nhỏ dài 14cm , đáy lớn dài 50cm
cho hình thang cân abcd tính đường cao biết ab=10cm,cd=26cm,ad=17 cm
Xét tam giác vuông \(AHC\)và tam giác vuông \(BKD\)ta có:
\(AD=BC\left(gt\right)\)
\(\widehat{C}=\widehat{D}\left(gt\right)\)
\(\Rightarrow\)tam giác vuông AHD = tam giác vuông BKC ( cạnh huyền - góc nhọn )
=> HC=HD(2 cạnh tương ứng)
Ta có: \(HK=10cm\)
\(\Rightarrow HC=\frac{CD-HK}{2}=\frac{26-10}{2}=8cm\)
Áp dụng định lí Pytago trong tam giác vuông AHC:
\(AC^2=HC^2+AH^2\\ \Rightarrow AH^2=AC^2-HC^2\\ =289-64=225\\ \Rightarrow AH=\sqrt{225}=15cm\)
Vậy đường cao của hình thang ABCD là 15cm
Cho hình thang cân ABCD có độ dài cạnh đáy là AB=26cm và cạnh bên AD=10cm.Đường chéo AC vuông góc với cạnh bên BC.Tính diện tích hình thang ABCD
Kẻ CH,DK lần lượt vuông góc AB
ΔCAB vuông tại C
=>CA^2+CB^2=AB^2
=>CA^2+10^2=26^2
=>CA=24cm
ΔCAB vuông tại C có CH là đường cao
nên CH*AB=CA*CB
=>CH*26=10*24=240
=>CH=120/13(cm)
ΔCHB vuông tại H
=>HB^2+CH^2=CB^2
=>HB^2=10^2-(120/13)^2=2500/169(cm)
=>HB=50/13(cm)
Xét ΔDKA vuông tại K và ΔCHB vuông tại H có
DA=CB
góc DAK=góc CBH
=>ΔDKA=ΔCHB
=>KA=HB=50/13cm
KH=AB-AK-HB
=26-50/13*2=238/13(cm)
Xét tứ giác KDCH có
DC//KH
DK//CH
Do đó: KDCH là hình bình hành
=>DC=KH=238/13(cm)
S ABCD=1/2*(DC+AB)*CH
=1/2(238/13+26)*120/13
=34560/169(cm2)
cho hình thang cân ABCD ( AB//CD; AB<CD ) kê đường cao AH và BK
a) chứng minh DH=CK
b) cho biết AB=10CM ; CD= 26CM ; BC=17CM. Tính AH
ai trả lời đc tui cho 1 acc liên quân cấp 30 có 16 tướng và 6 trang phục
tự vẽ hình , k ib mk vẽ hình cho
a)
xét tam giác AHD vuông và tam giác vuông BKC có AD=BC( hình thang cân )
góc D= góc C ( hình thang cân )
=> tam giác AHD = tam giác BKC ( trường ohjwp cạnh huyền canh góc vuông )
=> DH=CK
b)
có AB//HK ; AH//BK (cùng vuông góc DC=>//) và AHK= 90 độ => ABKH là hcn => AB=HK=10cm và ABKH là hcn => AH=BK
có DH+CK+HK=DC
=> mà DH=Ck => 2CK+HK=CD => 2CK+10=26=> 2CK=16=>CK=8
có tam giác BKC vuông tại K => \(BK^2+KC^2=BC^2\)
=> \(BK^2=BC^2-KC^2\)
\(\Rightarrow BK^2=17^2-8^2\)
\(\Rightarrow BK^2=225\Rightarrow BK=15\)
mà BK=AH ( mình chứng minh ở trên r đó b lướt lên là thấy )
=> AH=15
add acc lq nha , k cần ,add đưa nik lq , >.< <3
Cho hình thang ABCD có AB//CD. Biết AB=26cm; CD=10cm và đường chéo AC vuông góc với cạnh bên BC. Tính diện tích hình thang ABCD.
Hạ CH vuông với AB tại H
Ta có : \(HB=\frac{AB-CD}{2}=8\left(cm\right)\)
\(\Rightarrow BC^2=HB.AB=8.26\)
\(\Rightarrow BC=4\sqrt{3}\)
\(\Rightarrow HC=\sqrt{BC^2-HB^2}=12\)
\(\Rightarrow S_{ABCD}=\frac{HC.\left(AB+CD\right)}{2}=\frac{12.\left(26+10\right)}{2}=216\left(cm^2\right)\)
Ps : nhớ k ạ :33
# Aeri #