tim GTLN cua F=1-\(\sqrt{x^2-2x+2}\)
Tim gtnn cua da thuc
Cau 1 M bằng x mũ 2 trừ 8x cộng 5
Cau 2 F bang 2x mũ 2 cộng 6x trừ 4
Tim gtln cua da thúc
Cau 1 7 - x - x mũ 2
Cau 2 ( 1- 2x ) nhân (x-3)
Phần GTNN:
Câu 1:
Ta thấy: \(M=x^2-8x+5=x^2-8x+16-11=\left(x-4\right)^2-11\)
Do \(\left(x-4\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x-4\right)^2-11\ge-11\) ( mọi x )
=> GTNN của đa thức \(M=\left(x-4\right)^2-11\) bằng -11 khi và chỉ khi:
\(\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy GTNN của đa thức \(M=x^2-8x+5\) bằng -11 khi và chỉ khi x = 4.
Câu 2:
Ta thấy: \(F=2x^2+6x-4=2\left(x^2+3x-2\right)=2\left(x^2+3x+\frac{9}{4}-\frac{17}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\ge\frac{-17}{4}\) ( mọi x )
\(\Rightarrow2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\ge\frac{-17}{2}\) ( mọi x )
=> GTNN của đa thức \(F=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\) bằng \(\frac{-17}{2}\) khi và chỉ khi:
\(\left(x+\frac{3}{2}\right)^2-\frac{17}{4}=\frac{-17}{4}\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x+\frac{3}{2}=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy GTNN của đa thức \(F=2x^2+6x-4\) bằng \(\frac{-17}{4}\) khi và chỉ khi \(x=\frac{-3}{2}\).
cau 1: tinh gia tri cua x thoa man
\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\sqrt{2}\right)\left(2\sqrt{2}-x\right)=-3\)
cau 2.tinh GTLN cua bieu thuc
\(2x-2x^2+13\)
cau 3. tinh gia tri cua bieu thuc
\(\frac{3^{\left(x+y\right)^2}}{3^{\left(x-y\right)^2}}\)voi xy=\(\frac{1}{2}\)
cau 4. tim GTLN cua
\(-3x^2-6x-4\)
cau 5. cho ham so : f(x)=\(\frac{1}{5x+9}\)
tinh gia tri cua \(f\left(\frac{40}{25}\right)\)
cau 6. cho hinh thang can ABCD . Day nho AB,goc D bang 64 do. tinh so do goc ngoai tai A
Tim GTNN,GTLN cua F=1/2(x-1)^2+3
Bài này chỉ tìm được \(GTNN\) thôi bạn nhé!
\(F=\dfrac{1}{2}\left(x-1\right)^2+\dfrac{1}{3}\\ \text{Do }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow\dfrac{1}{2}\left(x-1\right)^2\ge0\forall x\\ F=\dfrac{1}{2}\left(x-1\right)^2+\dfrac{1}{3}\ge\dfrac{1}{3}\forall x\)
Dấu \("="\) xảy ra khi :
\(\left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)
Vậy \(F_{\left(Min\right)}=3\) khi \(x=1\)
tim GTNN,GTLN cua F=2/3x-2/-1 G=x^2+3/y-2/-1
a) \(F=2\left|3x-2\right|-1\)
Vì \(\left|3x-2\right|\ge0\forall x\Rightarrow2\left|3x-2\right|\ge0\)
\(\Rightarrow2\left|3x-2\right|-1\ge-1\)
''='' xảy ra khi \(3x-2=0\Rightarrow x=\dfrac{2}{3}\)
=> \(F_{min}=-1\)
b) \(G=x^2+3\left|y-2\right|-1\)
Ta có: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\3\left|y-2\right|\ge0\forall y\end{matrix}\right.\)
=> \(x^2+3\left|y-2\right|\ge0\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
''='' xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy \(G_{min}=-1\)
\(A=2\left|3x-2\right|-1\ge-1\)
Dấu "=" xảy ra khi : \(x=\dfrac{2}{3}\)
\(B=x^2+3\left|y-2\right|-1\ge-1\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
1.Giải`phương trình:\(x^2-10x+27=\sqrt{6-x}+\sqrt{x-2},\)
2.Tim GTLN,GTNN cua \(A=\frac{x+1}{x^2+x+1}\)
3.Tim m de 3 duong thang dong quy :
\(d_1:y=x-4;d_2:y=2x-1;d_3:y=mx+2\)
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2
tim gtln \(\dfrac{2\sqrt{x}}{2x+1}\)
\(\dfrac{2\sqrt{x}}{2x+1}\le\dfrac{2\sqrt{x}}{2\sqrt{2x.1}}=\dfrac{\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Tim GTLN cua bieu thuc sau \(\frac{2}{\frac{-\sqrt{x}}{x+\sqrt{x}+1}}+\sqrt{x}\)
a) tim GTNN, GTLN cua A = \(\sqrt{\left(x-1\right)}\)+\(\sqrt{\left(5-x\right)}\)
b) cho cac so duong x,y thoa man x+y>=3
CM: x+y+1/2x+2/y>=9/2
a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :
Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).
Sao ko hiện làm lại :
\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8