So sanh:
a) = 2002 x 2002 ; b) 2000 x 2004
ko tinh cu the, hay so sanh a va b biet
a = 2002 x 2002
b = 2002 x 2004
a = 2002 x 2002
b = 2002 x 2004
Vì 2002<2004 vậy a<b
Vì 2002 = 2002
Mà 2002 < 2004
=> 2002.2002 < 2002.2004
a = 2002 x 2002
b = 2002 x 2004
=> a < b
*******************************
A = 2002 x 2002
B = 2000 x 2004
So sánh A và B
A > B nha bạn
Trả lời:
\(A=2002.2002=2002.\left(2000+2\right)=2002.2000+2002.2\)
\(B=2000.2004=2000.\left(2002+2\right)=2000.2002+2000.2\)
Vậy \(a>b\)
ko quy đồg so sánh (2001+2002)/(2002+2003) và 2001/2002 + 2002/2003
Tham khảo :
Sứa , san hô , hải quỳ , thủy tức , sứa tu dài ,...
\(\dfrac{2001+2002}{2002+2003}< \dfrac{2001}{2002}+\dfrac{2002}{2003}\)
so sánh A và B mà không cần tính
a) A = 2002 x 2002 và b) B = 2000 x2004
A=2002.2002
A=2002² (1)
B=2000.2004
B=(2002-2).(2002+2)
B=2002²-4 (2)
Từ (1) và (2) suy ra A > B
A = 2002 \(\times\) 2002 = 2000 \(\times\) 2002 + 2002 \(\times\) 2
B = 2000 \(\times\) 2004 = 2000 \(\times\) 2002 + 2000 \(\times\) 2
Vậy A > B
So sánh A và B , với:
A= (2003^2002 + 2002^2002)^2003
B= (2003^2003 + 2002^2003) ^2002
Bạn tham khảo thử nhé:
Ta có: \(A=\left(2003^{2002}+2002^{2002}\right)^{2003}\\ =2003^{2002.2003}+2002^{2002.2003}->\left(a\right)\\ B=\left(2003^{2003}+2002^{2003}\right)^{2002}\\ =2003^{2003.2002}.2002^{2003.2002}->\left(b\right)\\ Từ\left(a\right),\left(b\right),ta-thấy:2003^{2002.2003}+2002^{2002.2003}=2003^{2003.2002}+2002^{2003.2002}\\ =>A=B\)
\(A=\left(2003^{2002}+2002^{2002}\right)^{2003}\\ =2003^{2002.2003}+2002^{2002.2003}->\left(a\right)\\ B=\left(2003^{2003}+2002^{2003}\right)^{2002}\\ =2003^{2003.2002}.2002^{2003.2002}->\left(b\right)\\ Từ\left(a\right),\left(b\right),ta-thấy:2003^{2002.2003}+2002^{2002.2003}=2003^{2003.2002}+2002^{2003.2002}\\ =>A=B\)
Cho A= 1+2002+20022+20023+......+200272
B=200273-1 so sánh A và B
So sánh a và b mà không cần tính toán cụ thể
a) 2002 x 2002
b) 2000 x 2004
A=2002x2002 và B=2000x2004
A=2002x(2000+2)
A=2002x2000+2002x2
B=2000x(2002+2)
B=2000x2002+2000x2
Vì 2002x2000 = 2000x2002
2002x2 > 2000x2
Vậy A > B
2000.2004=(2002-2)(2002+2)=20022+2.2002-2.2002-4=20022-4<20022.
Vậy a>b
So sánh a và b mà không tính cụ thể giá trị của chúng :
a = 2002 x 2002 ; b = 2000 x 2004
Bài này ta so sánh qua trung gian .
Được a > b
Đ/s : a > b
Ta có a=2002x2002=(2000+2)x2002=2000x2002+2x2002=2000x2002+4004
b=2000x2004=2000x(2002+2)=2000x2002+2000x2=2000x2002+4000
a=2000x20002+4004 >b=2000x2002+4000 (vì 2000x2002=2002x2000 và 4004>4000)
Vậy a>b
\(a=2002\cdot2002=2002^2\)
\(b=2000\cdot2004=\left(2002-2\right)\cdot\left(2002+2\right)=2002^2-2^2\)
Vì 20022>20022-4 Nên \(a>b\)
so sánh a và b mà ko tính cụ thể giá trị của chúng
a = 2002 x 2002
b = 2002 x 2004
Ta có 2002 < 2004
\(\Rightarrow\) 2002 x 2002 < 2002 x 2004
\(\Rightarrow\) a < b