Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
manh
Xem chi tiết
Akai Haruma
15 tháng 10 2023 lúc 17:54

Lời giải:

a. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}=4+3.\sqrt{\frac{1}{9}}.\sqrt{x-5}$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}=4+\sqrt{x-5}$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x-5=4$

$\Leftrightarrow x=9$ (tm)

b. Sửa đoạn 4x-45 thành 4x-20.

ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{4}.\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}+\frac{1}{3}\sqrt{x-5}-\frac{2}{3}\sqrt{x-5}=4$

$\Leftrightarrow \frac{5}{3}\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=\frac{12}{5}$

$\Leftrightarrow x-5=\frac{144}{25}=5,76$

$\Leftrightarrow x=10,76$ (tm)

Mưa Đang Đi Chơi
Xem chi tiết
YangSu
4 tháng 8 2023 lúc 11:09

\(\dfrac{2}{3}\sqrt{9u-9}-\dfrac{1}{4}\sqrt{16u-16}+27\sqrt{\dfrac{u-1}{81}}=4\left(dk:u\ge1\right)\)

\(\Leftrightarrow\dfrac{2}{3}\sqrt{9\left(u-1\right)}-\dfrac{1}{4}\sqrt{16\left(u-1\right)}+27\dfrac{\sqrt{u-1}}{\sqrt{81}}=4\)

\(\Leftrightarrow2\sqrt{u-1}-\sqrt{u-1}+3\sqrt{u-1}=4\\ \Leftrightarrow\sqrt{u-1}.\left(2-1+3\right)=4\\ \Leftrightarrow4\sqrt{u-1}=4\\ \Leftrightarrow\sqrt{u-1}=1\\ \Leftrightarrow u-1=1\\ \Leftrightarrow u=2\left(tm\right)\)

Vậy \(S=\left\{2\right\}\)

Khánh An Ngô
Xem chi tiết
Võ Việt Hoàng
22 tháng 7 2023 lúc 8:47

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

Võ Việt Hoàng
22 tháng 7 2023 lúc 9:06

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

Hà Nguyễn Thanh Hải
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 6 2021 lúc 20:14

\(\dfrac{1}{3}\sqrt{45}-\sqrt{20}+\sqrt{9+4\sqrt{5}}\)

\(\dfrac{1}{3}.3.\sqrt{5}-2\sqrt{5}+\sqrt{\left(2+\sqrt{5}\right)^2}\)

\(\sqrt{5}-2\sqrt{5}+2+\sqrt{5}=2\)

An Thy
23 tháng 6 2021 lúc 20:15

\(\dfrac{1}{3}\sqrt{45}-\sqrt{20}+\sqrt{9+4\sqrt{5}}=\dfrac{1}{3}\sqrt{9.5}-\sqrt{4.5}+\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(\dfrac{1}{3}.3\sqrt{5}-2\sqrt{5}+\sqrt{\left(2+\sqrt{5}\right)^2}=\sqrt{5}-2\sqrt{5}+\left|2+\sqrt{5}\right|\)

\(=\sqrt{5}-2\sqrt{5}+2+\sqrt{5}=2\)

Yeutoanhoc
23 tháng 6 2021 lúc 20:15

`1/3sqrt{45}-sqrt{20}+sqrt{9+4sqrt5}`

`=1/3*3sqrt5-2sqrt5+sqrt{(sqrt5+2)^2}`

`=sqrt5-2sqrt5+sqrt5+2=2`

huy tạ
Xem chi tiết
nthv_.
14 tháng 11 2021 lúc 19:53

\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(2\sqrt{x-5}=4\)

\(\sqrt{x-5}=2\)

\(\left\{{}\begin{matrix}2>0\left(luondung\right)\\x-5=4\end{matrix}\right.\)\(\Rightarrow x=9\left(tm\right)\)

chang
Xem chi tiết
Hồng Phúc
29 tháng 8 2021 lúc 14:37

9.

\(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)

\(=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)

\(=-\sqrt{5}\)

Hồng Phúc
29 tháng 8 2021 lúc 14:39

10.

\(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\)

\(=5\sqrt{3}-\sqrt{5+\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2+\dfrac{2}{3}}+6\sqrt{3}\)

\(=11\sqrt{3}-\sqrt{\dfrac{16}{3}}+\dfrac{9}{2}\sqrt{\dfrac{8}{3}}\)

\(=11\sqrt{3}-\dfrac{4\sqrt{3}}{3}+3\sqrt{6}\)

\(=\dfrac{29\sqrt{3}}{3}+3\sqrt{6}\)

Nguyễn Hoàng Minh
29 tháng 8 2021 lúc 14:39

\(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\\ =2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}=\sqrt{5}\)

\(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\\ =5\sqrt{3}-\dfrac{4\sqrt{3}}{3}+3\sqrt{6}+6\sqrt{3}\\ =\dfrac{15\sqrt{3}-4\sqrt{3}+6\sqrt{6}+18\sqrt{3}}{3}\\ =\dfrac{29\sqrt{3}+6\sqrt{6}}{3}\)

Phương Nhi Nguyễn
Xem chi tiết
nthv_.
15 tháng 10 2021 lúc 23:45
Phương
Xem chi tiết
Đào Thị Phương Duyên
15 tháng 9 2017 lúc 18:55

1,

a,\(4\sqrt{\dfrac{9}{2}}+\sqrt{2}+\sqrt{\dfrac{1}{18}}=4\sqrt{\dfrac{18}{4}}+\sqrt{2}+\sqrt{\dfrac{1}{9.2}}=4\dfrac{\sqrt{18}}{2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{1}{2}}=2\sqrt{9.2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{2}{4}}=2.3\sqrt{2}+\sqrt{2}+\dfrac{\sqrt{2}}{6}=6\sqrt{2}+\sqrt{2}+\sqrt{2}\dfrac{1}{6}=\dfrac{43}{6}\sqrt{2}\) b,\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}=4\sqrt{4.5}-3\sqrt{25.5}+5\sqrt{9.5}-15\dfrac{\sqrt{5}}{5}=4.2\sqrt{5}-3.5\sqrt{5}+5.3\sqrt{5}-3\sqrt{5}=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)

Trần Dương
15 tháng 9 2017 lúc 19:07

*) Giải phương trình :

\(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\) ( ĐKXĐ : x \(\ge\) 2 )

\(\Leftrightarrow\sqrt{4\left(x-2\right)}+5\sqrt{x-2}-\sqrt{9\left(x-2\right)}=20\)

\(\Leftrightarrow2\sqrt{x-2}+5\sqrt{x-2}-3\sqrt{x-2}=20\)

\(\Leftrightarrow4\sqrt{x-2}=20\)

\(\Leftrightarrow\sqrt{x-2}=5\)

\(\Leftrightarrow x-2=25\)

\(\Leftrightarrow x=27\) ( thỏa mãn điều kiện )

Vậy phương trình có nghiệm x = 27 .

Momozono Hisaki
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 11 2021 lúc 18:42

a) \(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\Leftrightarrow\left|x-3\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=0\end{matrix}\right.\)

b) ĐKXĐ: \(x\ge-5\)

\(pt\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)

\(\Leftrightarrow2\sqrt{x+5}=4\Leftrightarrow\sqrt{x+5}=2\)

\(\Leftrightarrow x+5=4\Leftrightarrow x=-1\left(tm\right)\)