Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:18

4: Ta có: \(\dfrac{6}{1-\sqrt{3}}-\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\)

\(=-3-3\sqrt{3}-3\)

\(=-6-3\sqrt{3}\)

Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:14

5: Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)

\(=-\sqrt{2}-\sqrt{2}\)

\(=-2\sqrt{2}\)

Nhi Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 13:01

a: \(\dfrac{3}{\sqrt{2}}+\sqrt{\dfrac{1}{2}}-2\sqrt{18}+\sqrt{\left(1-\sqrt{2}\right)^2}\)

\(=\dfrac{3}{2}\sqrt{2}+\dfrac{1}{2}\sqrt{2}-2\cdot3\sqrt{2}+\left|1-\sqrt{2}\right|\)

\(=2\sqrt{2}-6\sqrt{2}+\sqrt{2}-1=-3\sqrt{2}-1\)

b: \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{18}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{4\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{5\sqrt{3}+\sqrt{2}}{12}\)

c: \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}=\sqrt[3]{\dfrac{3}{4}\cdot\dfrac{9}{16}}=\sqrt[3]{\dfrac{27}{64}}=\dfrac{3}{4}\)

d: \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}=\sqrt[3]{\dfrac{54}{-2}}=-\sqrt[3]{27}=-3\)

e: \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}+7}=0\)

Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:20

1: ta có: \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)

\(=3+2\sqrt{2}+\sqrt{5}-2\)

\(=2\sqrt{2}+\sqrt{5}+1\)

2: Ta có: \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}\)

\(=3+2\sqrt{2}-3+2\sqrt{2}\)

\(=4\sqrt{2}\)

Như Huỳnh
Xem chi tiết
qwerty
19 tháng 6 2017 lúc 10:34

a) \(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{\left(245-100\sqrt{6}+98\sqrt{6}-240\right)\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{\left(5-2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{5\sqrt{3}-5\sqrt{2}-2\sqrt{18}+2\sqrt{12}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{5\sqrt{3}-5\sqrt{2}-6\sqrt{2}+4\sqrt{3}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{9\sqrt{3}-11\sqrt{2}}{9\sqrt{3}-11\sqrt{2}}\)

\(=1\)

qwerty
19 tháng 6 2017 lúc 11:38

b)

\(\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2\sqrt{6}}{6}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{\sqrt{6}}{3}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{3\left(2+\sqrt{3}\right)}-2\sqrt{18}+3\sqrt{2+\sqrt{3}}}{6\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{6+3\sqrt{3}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}}{6\sqrt{3}}}\)

\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\sqrt{6+3\sqrt{3}}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}\)

\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\left(\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}\)

\(=\dfrac{\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{6+3\sqrt{3}}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\left(-\sqrt{3}+2+\sqrt{3}\right)}}{-2\sqrt{3}}\)

\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\cdot2}}{-2\sqrt{3}}\)

\(=\dfrac{\sqrt{12+6\sqrt{3}}}{-2\sqrt{3}}\)

\(=\dfrac{\sqrt{\left(3+\sqrt{3}\right)^2}}{-2\sqrt{3}}\)

\(=\dfrac{3+\sqrt{3}}{-2\sqrt{3}}\)

\(=-\dfrac{\left(3+\sqrt{3}\right)\sqrt{3}}{6}\)

\(=-\dfrac{3\sqrt{3}+3}{6}\)

\(=-\dfrac{3\left(\sqrt{3}+3\right)}{6}\)

\(=-\dfrac{\sqrt{3}+1}{2}\)

qwerty
19 tháng 6 2017 lúc 11:58

\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)

\(=\dfrac{\left(1+\dfrac{\sqrt{3}}{2}\right)\cdot\left(1-\sqrt{1+\dfrac{\sqrt{3}}{2}}\right)}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(1-\dfrac{\sqrt{3}}{2}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)}{\dfrac{\sqrt{3}}{2}}\)

\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3\left(1+\dfrac{\sqrt{3}}{2}\right)}}{2}}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(1-\dfrac{\sqrt{3}}{2}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)\cdot2}{\sqrt{3}}\)

\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3+\dfrac{3\sqrt{3}}{2}}}{2}}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(2-\sqrt{3}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)}{\sqrt{3}}\)

\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}-\sqrt{3+\dfrac{3\sqrt{3}}{2}}}{2}}{\sqrt{3}}+\dfrac{2+2\sqrt{1-\dfrac{\sqrt{3}}{2}}-\sqrt{3}-\sqrt{3-\dfrac{3\sqrt{3}}{2}}}{\sqrt{3}}\)

\(=\dfrac{-\left(2-2\sqrt{1+\dfrac{\sqrt{3}}{2}}+\sqrt{3}-\sqrt{3+\dfrac{3\sqrt{3}}{2}}\right)+2\cdot2\sqrt{1-\dfrac{\sqrt{3}}{2}}-\sqrt{3}-\sqrt{3-\dfrac{3\sqrt{2}}{2}}}{\sqrt{3}}\)

\(=1\)

HoàngIsChill
Xem chi tiết
Trúc Giang
20 tháng 7 2021 lúc 15:34

Chia nhỏ ra bạn ơi!

luynh
Xem chi tiết
Ngô Hải Nam
25 tháng 9 2023 lúc 20:34

có \(VT=\dfrac{\sqrt{1+\dfrac{2\sqrt{2}}{3}}+\sqrt{1-\dfrac{2\sqrt{2}}{3}}}{\sqrt{1+\dfrac{2\sqrt{2}}{3}}-\sqrt{1-\dfrac{2\sqrt{2}}{3}}}\)

\(=\dfrac{\sqrt{\dfrac{3+2\sqrt{2}}{3}}+\sqrt{\dfrac{3-2\sqrt{2}}{3}}}{\sqrt{\dfrac{3+2\sqrt{2}}{3}}-\sqrt{\dfrac{3-2\sqrt{2}}{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+2\sqrt{2}+1}}{\sqrt{3}}+\dfrac{\sqrt{2-2\sqrt{2}+1}}{\sqrt{3}}}{\dfrac{\sqrt{2+2\sqrt{2}+1}}{\sqrt{3}}-\dfrac{\sqrt{2-2\sqrt{2}+1}}{\sqrt{3}}}\)

bạn xem lại đề ạ

\(=\dfrac{\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{3}}}{\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{3}}}\)

\(=\dfrac{\dfrac{\left|\sqrt{2}+1\right|+\left|\sqrt{2}-1\right|}{\sqrt{3}}}{\dfrac{\left|\sqrt{2}+1\right|-\left|\sqrt{2}-1\right|}{\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}+1+\sqrt{2}-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{\sqrt{2}+1-\sqrt{2}+1}\) (vì \(\sqrt{2}+1>0;\sqrt{2}-1>0\))

\(=\dfrac{2\sqrt{2}}{2}\\ =\sqrt{2}\)

Vui lòng để tên hiển thị
25 tháng 9 2023 lúc 20:35

Xem lại đề!

HoàngIsChill
Xem chi tiết
Nguyễn Huy Tú
19 tháng 7 2021 lúc 10:06

1, \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}=\dfrac{3+2\sqrt{2}}{9-8}-\dfrac{3-2\sqrt{2}}{9-8}\)

\(=3+2\sqrt{2}-3+2\sqrt{2}=4\sqrt{2}\)

2, \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+\sqrt{12}}\)

\(=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{6}.\left(-1\right)}-\dfrac{3\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}.\left(-1\right)}\)

\(=\dfrac{2\sqrt{3}+3\sqrt{2}-3\sqrt{2}+3\sqrt{3}}{-\sqrt{6}}=\dfrac{5\sqrt{3}}{-\sqrt{6}}=-5\sqrt{18}=-15\sqrt{2}\)

3, \(\dfrac{2}{\sqrt{5}-2}+\dfrac{-2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)}{1}-\dfrac{2\left(\sqrt{5}-2\right)}{1}\)

\(=2\sqrt{5}+4-2\sqrt{5}+4=8\)

tương tự 

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 12:09

\(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}=3+2\sqrt{2}-3+2\sqrt{2}=4\sqrt{2}\)

2012 SANG
Xem chi tiết
Toru
28 tháng 8 2023 lúc 16:35

\(\dfrac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}+\dfrac{2}{\sqrt{2}+1}-\dfrac{4}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}+\dfrac{2\sqrt{2}}{2+\sqrt{2}}-\dfrac{4\sqrt{2}+4}{2+\sqrt{2}}\)

\(=\sqrt{3}+\sqrt{3}+\dfrac{-2\sqrt{2}-4}{2+\sqrt{2}}\)

\(=2\sqrt{3}+\dfrac{-2\left(2+\sqrt{2}\right)}{2+\sqrt{2}}\)

\(=2\sqrt{3}-2\)

\(------\)

\(\dfrac{4}{\sqrt{5}+1}+\dfrac{5}{\sqrt{5}+2}+\dfrac{5}{\sqrt{5}+3}\)

\(=\dfrac{4\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}+\dfrac{5\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\dfrac{5\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)}\)

\(=\dfrac{4\sqrt{5}-4}{5-1}+\dfrac{5\sqrt{5}-10}{5-4}+\dfrac{5\sqrt{5}-15}{5-9}\)

\(=5\sqrt{5}-10+\left(\dfrac{4\sqrt{5}-4}{4}+\dfrac{5\sqrt{5}-15}{-4}\right)\)

\(=\dfrac{4\cdot\left(5\sqrt{5}-10\right)}{4}+\left(\dfrac{4\sqrt{5}-4}{4}-\dfrac{5\sqrt{5}-15}{4}\right)\)

\(=\dfrac{20\sqrt{5}-40}{4}+\dfrac{-\sqrt{5}+11}{4}\)

\(=\dfrac{19\sqrt{5}-29}{4}\)

#Ayumu

PTTD
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 14:44

b: Ta có: \(\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)

\(=2-\sqrt{3}+\dfrac{1}{3}\sqrt{3}-1+\dfrac{1}{3}\sqrt{3}\)

\(=\dfrac{3-\sqrt{3}}{3}\)