Cho 8a^2+b^2=6ab
Hãy tính giá trị của phân thức M=a^2+b^2+3ab/a^2-b^2+6ab
giúp mik với, thanks mọi người trước nhìu. Bài 1: rút gọn các biểu thức sau: a) ( a + b ) mũ 3 + ( a - b ) mũ 3 - 6ab mũ 2 b ) ( a + b ) mũ 3 - ( a -b ) mũ 3 - 6ab mũ 2 Bài 2: Cho x + y = 7 , tính giá trị biểu thức a) M = ( x + y ) mũ 3 + 2x mxu 2 + 4xy + 2y mỹ 2 b) N = x mũ 3 + y mũ 3 - 2x mũ 2 - 2y mũ 2 + 3xy( x +y) - 4xy + 3(x + y ) =10
Bài 2:
a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)
\(=7^3+2\cdot7^2=441\)
Cho a+b=1
Tính M= a^3+b^3+3ab (a^2+b^2)+6ab(a+b)
Ta có
a^3+b^3+3ab(a^2+b^2)+6ab(a+b)=a^3+b^3+3ab.a^2+3ab.b^2+6ab=a^3+b^3+3(a^2)b+3(b^2)a+3a(b-1)b^2+3b(a-1)a^2+6ab
=(a+b)^3+3ab((b-1).b+(a-1).a)+6ab=(a+b)^3+3ab((1-b).(-b)+(1-a)(-a))+6ab=(a+b)^3+3ab(-2ab)+6ab
=(a+b)^3+(-6ab)ab+6ab
=>(a+b)^3+6ab(-ab-1)=6ab(-ab-1)+1 Vậy M=6ab(-ab-1)+1
k cho mình nhá
Biến đổi (2a-b)2 theo hằng đẳng thức thu được biểu thức là:
A. 8a3 - b3
B. 2a3 - 3a2b + 3ab2 -b3
C. 8a3 - 12a2b + 6ab2 - b3
D. 8a3 +12a2b+6ab2+b3
Cho a-b=2.Tính giá trị biểu thức A=a3-b3-6ab
Cho \(a>0\) , \(b>0\) thỏa mãn: \(\log_{3a+2b+1}\left(9a^2+b^2+1\right)+\log_{6ab+1}\left(3a+2b+1\right)=2\) .
Tính giá trị của biểu thức: \(P=a+2b\)
\(a;b>0\Rightarrow3a+2b+1>1\)
\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\) đồng biến
Mà \(9a^2+b^2\ge2\sqrt{9a^2b^2}=6ab\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)\)
\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge2\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}log_{6ab+1}\left(3a+2b+1\right)=1\\3a=b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6ab+1=3a+2b+1\\b=3a\end{matrix}\right.\)
\(\Rightarrow18a^2+1=3a+6a+1\)
\(\Leftrightarrow18a^2-9a=0\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\)
CHo các số thực dương a,b thỏa mãn a+b+3ab=1. Tìm GTLN của biểu thức \(A=\frac{6ab}{a-b}-a^2-b^2\)
a,phân tích đa thức thành nhân tử
27ab2-3a-3ab2+6ab
b, tập hợp các giá trị của x thỏa mãn (x-3)2=4x^2-4x+ là :
A {4/3;2} B.{-4/3;2} C.{-2;4/3} D.{-4/3;-2}
Cho hai đa thức P = \(3a^2 + 6ab - b^2 \)
và Q = \(b^2 - a^2 - 3ab\)
Chứng minh rằng không tồn tại cặp số (a; b) để P và Q có cùng giá trị âm.
Cho a,b thuộc R+ thỏa: a + b + 3ab = 1.
Tìm MaxP: \(P=\frac{6ab}{a+b}-a^2-b^2\)
Đặt \(a+b=x;ab=y\Rightarrow x^2\ge4y\)
Bài toán trở thành:
Cho các số thực x, y thỏa mãn \(x^2\ge4y\) và \(x+3y=1\).
Tìm Max: \(P=\frac{6y}{x}+2y-x^2\)
Lời giải:
Từ đề bài suy ra \(x=1-3y\) mà \(x^2\ge4y\Rightarrow9\left(y-1\right)\left(y-\frac{1}{9}\right)\ge0\)
\(P=\frac{6y}{1-3y}+2y-\left(1-3y\right)^2\)
\(=-\frac{3\left(y-\frac{1}{9}\right)\left(y-\frac{1}{3}\right)\left(27y^2-30y+16\right)}{\left(3y-1\right)^2}+\frac{7}{9}\le\frac{7}{9}\)
Đẳng thức xảy ra khi \(y=\frac{1}{9}\Rightarrow x=1-3y=\frac{2}{3}\Rightarrow a=b=\frac{1}{3}\)
@Akai Haruma: cô check giúp em ạ!