Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bánh Bèo Cute
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 13:40

Bài 2: 

a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)

\(=7^3+2\cdot7^2=441\)

An Ann
Xem chi tiết
Nguyễn Đức Mạnh
18 tháng 9 2016 lúc 7:46

Ta có

a^3+b^3+3ab(a^2+b^2)+6ab(a+b)=a^3+b^3+3ab.a^2+3ab.b^2+6ab=a^3+b^3+3(a^2)b+3(b^2)a+3a(b-1)b^2+3b(a-1)a^2+6ab

                                               =(a+b)^3+3ab((b-1).b+(a-1).a)+6ab=(a+b)^3+3ab((1-b).(-b)+(1-a)(-a))+6ab=(a+b)^3+3ab(-2ab)+6ab

                                                                                                                                                        =(a+b)^3+(-6ab)ab+6ab

=>(a+b)^3+6ab(-ab-1)=6ab(-ab-1)+1 Vậy M=6ab(-ab-1)+1

k cho mình nhá

MIU Ka
Xem chi tiết
Khánh Kate Trần
Xem chi tiết
Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 7 2021 lúc 22:42

\(a;b>0\Rightarrow3a+2b+1>1\)

\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\) đồng biến

Mà \(9a^2+b^2\ge2\sqrt{9a^2b^2}=6ab\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)\)

\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge2\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}log_{6ab+1}\left(3a+2b+1\right)=1\\3a=b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6ab+1=3a+2b+1\\b=3a\end{matrix}\right.\)

\(\Rightarrow18a^2+1=3a+6a+1\)

\(\Leftrightarrow18a^2-9a=0\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\)

Trương Cao Phong
Xem chi tiết
Lê Công Đức
Xem chi tiết
Lê Công Đức
3 tháng 1 2019 lúc 22:29

nhanh lên hộ t đi :>>>>>>>>>>

Linh Suzu
Xem chi tiết
Lalisa Manobal
Xem chi tiết
tthnew
8 tháng 2 2020 lúc 10:40

Đặt \(a+b=x;ab=y\Rightarrow x^2\ge4y\)

Bài toán trở thành:

Cho các số thực x, y thỏa mãn \(x^2\ge4y\)\(x+3y=1\).

Tìm Max: \(P=\frac{6y}{x}+2y-x^2\)

Lời giải:

Từ đề bài suy ra \(x=1-3y\)\(x^2\ge4y\Rightarrow9\left(y-1\right)\left(y-\frac{1}{9}\right)\ge0\)

\(P=\frac{6y}{1-3y}+2y-\left(1-3y\right)^2\)

\(=-\frac{3\left(y-\frac{1}{9}\right)\left(y-\frac{1}{3}\right)\left(27y^2-30y+16\right)}{\left(3y-1\right)^2}+\frac{7}{9}\le\frac{7}{9}\)

Đẳng thức xảy ra khi \(y=\frac{1}{9}\Rightarrow x=1-3y=\frac{2}{3}\Rightarrow a=b=\frac{1}{3}\)

@Akai Haruma: cô check giúp em ạ!

Khách vãng lai đã xóa
Lalisa Manobal
8 tháng 2 2020 lúc 9:08

@Akai Haruma

Khách vãng lai đã xóa