Đặt \(a+b=x;ab=y\Rightarrow x^2\ge4y\)
Bài toán trở thành:
Cho các số thực x, y thỏa mãn \(x^2\ge4y\) và \(x+3y=1\).
Tìm Max: \(P=\frac{6y}{x}+2y-x^2\)
Lời giải:
Từ đề bài suy ra \(x=1-3y\) mà \(x^2\ge4y\Rightarrow9\left(y-1\right)\left(y-\frac{1}{9}\right)\ge0\)
\(P=\frac{6y}{1-3y}+2y-\left(1-3y\right)^2\)
\(=-\frac{3\left(y-\frac{1}{9}\right)\left(y-\frac{1}{3}\right)\left(27y^2-30y+16\right)}{\left(3y-1\right)^2}+\frac{7}{9}\le\frac{7}{9}\)
Đẳng thức xảy ra khi \(y=\frac{1}{9}\Rightarrow x=1-3y=\frac{2}{3}\Rightarrow a=b=\frac{1}{3}\)
@Akai Haruma: cô check giúp em ạ!