cho x,y E R thỏa mãn x+y=1 chứng minh x mũ 3 + 3xy + y mũ 3=1
Cho x, y \(\in R\) thỏa mãn:
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
Chứng minh rằng: \(x^3+y^3+3xy=1\)
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(x-\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)
\(\Leftrightarrow-2\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)
\(\Leftrightarrow x-\sqrt{x^2+2}+y-1+\sqrt{y^2-2y+3}=0\) (*)
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)\left(y-1-\sqrt{y^2-2y+3}\right)=2\left(y-1-\sqrt{y^2-2y+3}\right)\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right).-2=2\left(y-1-\sqrt{y^2+2y+3}\right)\)
\(\Leftrightarrow y-1-\sqrt{y^2+2y+3}+x+\sqrt{x^2+2}=0\) (2*)
Cộng vế với vế của (*) và (2*) => \(2x+2y-2=0\)
\(\Leftrightarrow x+y=1\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Leftrightarrow x^3+y^3+3xy=1\)
Ta có:`(x+sqrt{x^2+2})(sqrt{x^2+2}-x)=2`
`<=>sqrt{x^2+2}-x=y-1+sqrt{y^2-2y+3}`
`<=>sqrt{x^2+2}-sqrt{y^2-2y+3}=x+y-1(1)`
CMTT:`sqrt{y^2-2y+3}-(y-1)=x+sqrt{x^2+2}`
`<=>sqrt{y^2-2y+3}-y+1=x+sqrt{x^2+2}`
`<=>sqrt{y^2-2y+3}-sqrt{x^2+2}=x+y-1(2)`
Cộng từng vế (1)(2) ta có:
`2(x+y-1)=0`
`<=>x+y-1=0`
`<=>x+y=1`
`<=>(x+y)^3=1`
`<=>x^3+y^3+3xy(x+y)=1`
`<=>x^3+y^3+3xy=1`(do `x+y=1`)
cho số a,b,c,x,y,z thỏa mãn a+b+c=a mũ 2 + b mũ 2 +c mũ 2=1 và x/a = y/b = z/c (các tỉ số đều có nghĩa) CHứng minh x mũ 2 +y mũ 2 +z mũ 2 =(x+y+z) mũ 2
1.Cho x-y=7.Tính giá trị của các biểu thức:
a,M=x mũ 3 - 3xy(x-y) - y mũ 3 - x mũ 2 + 2xy - y mũ 2
b,N=x mũ 2(x+1) - y mũ 2(y-1) + xy - 3xy(x-y+1) - 95
2.Cho x+y=5.Tính giá trị các biểu thức:
a,P=3x mũ 2 - 2x + 3y mũ 2 - 2y + 6xy - 100
b,Q=x mũ 3 + y mũ 3 - 2x mũ 2 - 2y mũ 2 + 3xy(x+y) - 4xy + 3(x+y) + 10
Các bn giúp mk vs đây là btvn của mk
B1 : a, M = x3-3xy(x-y)-y3-x2+2xy-y2
= ( x3-y3)-3xy(x-y) -(x2-2xy+y2)
= (x-y)(x2+xy+y2)-3xy(x-y)-(x-y)2
= (x-y) [(x2+xy+y2-3xy-(x-y)]
= (x-y)[(x2-2xy+y2)-(x-y)
= (x-y)[(x-y)2-(x-y)]
= (x-y)(x-y)(x-y-1)
= (x-y)2(x-y-1)
= 72(7-1) = 49 . 6= 294
N = x2(x+1)-y2(y-1)+xy-3xy(x-y+1)-95
= x3+x2-(y3-y2)+xy-(3x2y-3xy2+3xy)-95
= x3+x2-y3+y2+xy-3x2y+3xy2-3xy-95
= (x3-y3)+(x2-2xy+y2)-(3x2y+y2)-(3x2y-3xy2)-95
=(x-y)(x2+xy+y2)+(x-y)2-3xy(x-y)-95
= (x-y)(x2+xy+y2+x-y-3xy)-95
= (x-y)[(x2-2xy+y2)+(x-y)]-95
= (x-y)[(x-y)2+(x-y)]-95
=(x-y)(x-y)(x-y+1)-95
= (x-y)2(x-y+1)-95
= 72(7+1)-95=297
cho x;y thuộc R thỏa mãn x-2y=5; x bình phương + 4.y bình phương=29. tính giá trị của A = x mũ 3 - 8.y mũ 3
Cho x, y,z thỏa mãn xyz=11, x+y+z =3 , x mũ 2 + y mũ 2 + z mũ 2 = 29Tính
H=x mũ 3 + y mũ 3 + z mũ 3
cho 2 số x;y thỏa mãn (2x-3)mũ 2 + trị y -2 =1 . số cặp x;y thảo mãn là...
cho x,y,z thỏa mãn điều kiện x/y=y/z=z/x. tính giá trị biểu thức P=(x-y)mũ 2022+(y-z)mũ 2023+(x-z-1)mũ 2024
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)
bài 1: Rút gọn giá trị biểu thức:
a) x(x+y) - y(x+y) với x=(-1/2)mũ 5 : (1/2) mũ 4 và y=8 mũ 2 : (-2) mũ 5
b) (x-y) (x mũ 2 + xy + y mũ 2) -(x+y) ( x mũ 2 - y mũ 2 ) với x-y=0
c) x mũ 3 ( x mũ 2 - y mũ 2 ) + y mũ 2 ( x mũ 3 - y mũ 3 ) với x=16 mũ 5 : 8 mũ 5 : (-2)mũ 4 và |y|=1
d) x=y=0; x = y = 1; x = 1/2; y= -3/2; x= căn 4; y= căn 9
e) 5x ( 4x mũ 2 - 2x + 1) - 2x ( 10x mũ 2 - 5x-2) với x = -3 ( -5 )
g) 12- ( 2-3b ) + 35b - 9 ( b+1 ) với b= (1/5) mũ 5 : (1/4) mũ 2
f) ( x-y) ( x mũ 2 + xy + y mũ 2 ) + ( x+y ) ( x mũ 2 -xy + y mũ 2 ) với x=2 và y = 2013 mũ 2014
a)<=>
A,=(x+y)(x-y)=x^2-y^2
x=(-1/2)^5:(1/2)^4=-1/2
x^2=1/4
y=8^2/(-2)^5=-2
y^2=4
A=1/4-4=-15/4
A = 16 x mũ 4 - 8x mũ 3 y + 7x mũ 2 y mũ 2 - 9y mũ 4
B = -15 x mũ 4 + 3x mũ 3 y - x mũ 2 y mũ 2 - 6y mũ 4
C = 5x mũ 3 y + 3x mũ 2 y mũ 2 + 17 y mũ 4 + 1
Chứng minh rằng ít nhất 1 trong 3 đa thức này có giá trị dương với mọi x , y