(-2023)x33+2023x(-68)+2023
(-2023)x33+2023x(-68)+2023
`@` `\text {Ans}`
`\downarrow`
`(-2023) \times 33+2023 \times (-68)+2023`
`= 2023 \times (-33 - 68 + 1)`
`= 2023 \times (-101 + 1)`
`= 2023 \times (-100)`
`= -202300`
(-2023) x 33 + 2023 x (-68) + 2023
= 2023 x [(-33) + (-68) + 1]
= 2023 x (-100)
= -202300
Cho x, y, z thoả mãn xyz = 2023.
Chứng minh: \(\dfrac{2023x}{xy+2023x+2023}+\dfrac{y}{yz+y+2023}+\dfrac{z}{xz+z+1}=1\)
Có `xyz=2023=>2023=xyz`
Thay vào ta có :
\(\dfrac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}=1\\ \dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}=1\\ \dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+z+1}=1\\ \dfrac{xz+1+z}{1+xz+z}=1\left(dpcm\right)\)
x + 3x + 5x + 7x + ... + 2023x = 2023 x 2024
x + 3x+ 5x +7x +..+2023x=2023 x 2024
Xét VT : x+3x+5x+7x+......+2023x
Số hạng của dãy số trên là : \(\dfrac{2023-1}{2}+1=1012\left(sốhạng\right)\)
Tổng số của dãy số trên là : \(\dfrac{\left(2023x+x\right).1012}{2}\text{=}1012x.1012\)
Do đó : ta có :
\(1012x.1012\text{=}2023.2024\)
\(1012x\text{=}4046\)
\(x\text{=}\dfrac{2023}{506}\)
VT = x + 3x + 5x + 7x +... + 2023x = [(2023 - 1):2 +1] . (2023+1)x = 1012. 2024x = 2048288x
VP= 2023 . 2024= 4094552
VT=VP <=> 2048288x =4094552
<=>\(x\approx2\)
1/2023x 1/5 + 1/2023 x 8/5- 1/2023x16/20
`1/2023xx1/5+1/2023xx8/5-1/2023xx16/20`
`=1/2023xx(1/5+8/5-16/20)`
`=1/2023xx(1/5+8/5-4/5)`
`=1/2023xx5/5=1/2023`
cho các số thực x,y,z khác 0 thỏa mãn:
x/2023x+y+z+t = y/x+2023y+z+t = z/x+y+2023z+t = t/x+y+z+2023t
chứng minh rằng biểu thức:
P =(1+ x+y/z+t)^2023 + (1 + y+z/t+x)^2023 + (1 + t+x/y+z)^2023 + (1 + t+x/y+z)^2023
có giá trị nguyên
TH1: \(x+y+z+t=0\)
\(P=\left(1+\dfrac{x+y}{z+t}\right)^{2023}+\left(1+\dfrac{y+z}{x+t}\right)^{2023}+\left(1+\dfrac{z+t}{x+y}\right)^{2023}+\left(1+\dfrac{t+x}{y+z}\right)^{2023}\)
\(=\left(\dfrac{x+y+z+t}{z+t}\right)^{2023}+\left(\dfrac{x+y+z+t}{x+t}\right)^{2023}+\left(\dfrac{x+y+z+t}{x+y}\right)^{2023}+\left(\dfrac{x+y+z+t}{y+z}\right)^{2023}\)
\(=0+0+0+0=0\) là số nguyên (thỏa mãn)
TH2: \(x+y+z+t\ne0\), áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2023x+y+z+t}=\dfrac{y}{x+2023y+z+t}=\dfrac{z}{x+y+2023z+t}+\dfrac{t}{x+y+z+2023t}\)
\(=\dfrac{x+y+z+t}{\left(2023x+y+z+t\right)+\left(x+2023y+z+t\right)+\left(x+y+2023z+t\right)+\left(x+y+z+2023t\right)}\)
\(=\dfrac{x+y+z+t}{2026\left(x+y+z+t\right)}=\dfrac{1}{2026}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2023x+y+z+t}=\dfrac{1}{2026}\\\dfrac{y}{x+2023y+z+t}=\dfrac{1}{2026}\\\dfrac{z}{x+y+2023z+t}=\dfrac{1}{2026}\\\dfrac{t}{x+y+z+2023t}=\dfrac{1}{2026}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2026x=2023x+y+z+t\\2026y=x+2023y+z+t\\2026z=x+y+2023z+t\\2026t=x+y+z+2023t\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4x=x+y+z+t\\4y=x+y+z+t\\4z=x+y+z+t\\4t=x+y+z+t\end{matrix}\right.\)
\(\Rightarrow4x=4y=4z=4t\) (vì đều bằng \(x+y+z+t\))
\(\Rightarrow x=y=z=t\)
Do đó:
\(P=\left(1+\dfrac{x+x}{x+x}\right)^{2023}+\left(1+\dfrac{x+x}{x+x}\right)^{2023}+\left(1+\dfrac{x+x}{x+x}\right)^{2023}+\left(1+\dfrac{x+x}{x+x}\right)^{2023}\)
\(=2^{2023}+2^{2023}+2^{2023}+2^{2023}\)
\(=4.2^{2023}=2^{2025}\in Z\)
Em kiểm tra lại đề, 2 ngoặc cuối bị giống nhau, chắc em ghi nhầm
cho các số thực x,y,z khác 0 thỏa mãn
x/2023x+y+z+t = y/x+2023y+z+t = z/x+y+2023z+t = t/x+y+z+2023t
chứng minh rằng biểu thức:
P =(1+ x+y/z+t)^2023 + (1 + y+z/x+y)^2023 + (1 + t+x/y+z)^2023 + (1 + t+x/y+z)^2023
giúp mik vs;-;
Chứng minh biểu thức thế nào em?
Tính hợp lý
a)(-2023).33+2023.(-68)+2023
b)(38-29+43)-(43+38)
a)(−2023).33+2023.(−68)+2023�)(-2023).33+2023.(-68)+2023
=2023.(−33−68+1)=2023.(-33-68+1)
=2023.(−100)=2023.(-100)
=−202300=-202300
b)(38−29+43)−(43+38)�)(38-29+43)-(43+38)
=38−29+43−43−38=38-29+43-43-38
=(38−38)−29+(43−43)=(38-38)-29+(43-43)
=−29=-29
=−29=-29
a: \(\left(-2023\right)\cdot33+2023\left(-68\right)+2023\)
\(=2023\left(-33-68+1\right)\)
\(=2023\left(-100\right)=-202300\)
b: \(\left(38-29+43\right)-\left(43+38\right)\)
\(=38-29+43-43-38\)
=(38-38)+(43-43)-29
=0+0-29
=-29
a) (-2023).33+2023.(-68)+2023=2023.(-33)+2023.(-68)+2023
=2023.[(-33)+(-68)+1]
=2023.-100
=-202300
Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thoả mãn f'(x) = (1 - x)(x+2)g(x) + 2023 với g(x) < 0, ∀x∈R. Hàm số y = f(1-x) + 2023x + 2024 nghịch biến trên khoảng nào?