A 2+22+....+219+220
B 2+22+....+299+2100
C 3+32+.....+39+310
Chứng minh rằng:
a) A là một luỹ thừa của 2 với A = 4 + 22 + 23 + ... + 220
b) 2B + 3 là một luỹ thừa của B với B = 3 + 32 + 33 + ... + 3100
a: \(A=4+2^2+2^3+...+2^{20}\)
=>\(2A=8+2^3+2^4+...+2^{21}\)
=>\(2A-A=2^{21}+2^{20}+...+2^4+2^3+8-2^{20}-2^{19}-...-2^3-2^2-4\)
\(=2^{21}+8-2^2-4=2^{21}\)
=>\(A=2^{21}\) là lũy thừa của 2
b:
\(B=3+3^2+3^3+...+3^{100}\)
=>\(3B=3^2+3^3+...+3^{101}\)
=>\(2B=3^{101}-3\)
=>\(2B+3=3^{101}\) là lũy thừa của 3
a, A = 1 + 2 + 22 + 23 + ... + 250 =
b, B = 1 + 3 + 32 + 33 + ... 3100 =
c, C = 5 + 52 + 53 + ... 530 =
d, D = 2100 = 299 + 298 - 297 + ... + 22 - 2
a) \(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)
b) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+...+3^{101}\)
\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)
\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)
c) \(C=5+5^2+...+5^{30}\)
\(\Rightarrow5C=5^2+5^3+...+5^{31}\)
\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)
\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)
d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)
\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)
\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)
a) 25 - 53 : 52 + 12 : 22
b) 5 [ ( 85 - 35 : 7 ) : 8 + 90 ] - 50
c) 2. [ ( 7 - 33 : 32 ) 22 + 99 ] - 100
d) 27 : 22 + 54 : 53 . 24 - 3 . 25
e) ( 35 . 37 ) : 310 + 5 . 24 - 73 : 7
f) 32 . [ ( 52 - 3 ) : 11 ] - 24 + 2 . 103
g) ( 62007 - 62006 ) : 62006
h) ( 52001 - 52000 ) : 52000
i) ( 72005 + 72004 ) : 72004
j) ( 57 + 75 ) . ( 68 + 86 ) . ( 24 - 42 )
k) ( 57 + 79 ) . ( 54 + 56 ) . ( 33 . 3 - 92 )
l) [ ( 52 . 23) - 72 . 2 ) : 2 ] 6 - 7 . 25
Tính tổng sau:
A=2+22+23+...+219+220
B=5+52+53+...+550
C=1+3+32+33+...+3100
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)
2A= 2(2+22+23+...+219+220)
2A= 22+23+24+...+220+221
2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)
A=221-2
Vậy A=221-2
Làm tương tự nhee
a) 23 – 53 : 52 + 12.22 | b) 5[(85 – 35 : 7) : 8 + 90] – 50 |
c) 2.[(7 – 33 : 32) : 22 + 99] – 100 | d) 27 : 22 + 54 : 53 . 24 – 3.25 |
e) (35 . 37) : 310 + 5.24 – 73 : 7 | f) 32.[(52 – 3) : 11] – 24 + 2.103 |
g) (72005 + 72004) : 72004 | h) (57 + 75).(68 + 86).(24 – 42) |
i) (75 + 79).(54 + 56).(33.3 – 92) | j) [(52.23) – 72.2) : 2].6 – 7.25 |
a: \(2^3-5^3:5^2+12\cdot2^2\)
\(=8-5+48\)
\(=51\)
b: \(5\cdot\left[\left(85-35:7\right):8+90\right]-5\)
\(=5\cdot\left[10+90\right]-5\)
=495
a: 23−53:52+12⋅2223−53:52+12⋅22
=8−5+48=8−5+48
=51=51
b: 5⋅[(85−35:7):8+90]−55⋅[(85−35:7):8+90]−5
=5⋅[10+90]−5=5⋅[10+90]−5
=495
a) Thu gọn tổng sau A = 1 + 2 + 22 + 23 + ….+ 219 + 220. Tìm x biết A + 1 = 2x
b) Cho B = 1 + 3 + 32 + 33+ …. + 399 + 3100.Tìm x biết 2B + 1 = 3x+1
a: Tổng các số hạng là:
\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)
Ta có: A+1=2x
\(\Leftrightarrow2x=24311\)
hay \(x=\dfrac{24311}{2}\)
1.So sánh:
a, 2 mũ 6 và 6 mũ 2
b, 73+1 và 7 và 73 + 1
c, 1314 - 1313 và 1315 - 1314
d, 32+n và 23+n (n e N *)
2. Rút gọn mỗi biểu thức sau:
a) A= 1+3+32+33+.....+399+3100
b) B= 2100-299+298-297+....-23+22-2+1
Điền vào ô vuông các dấu thích hợp (=; <; >):
a) 2 3 . 5 + 3 4 . 2 - 4 . ( 5 7 : 5 5 ) □ 15 : ( 3 5 : 3 4 ) + 5 . 2 4 - 7 2 - 4 ;
b) ( 3 5 . 3 7 ) : 3 1 0 + 5 . 2 4 □ 5 . 2 2 . 2 3 - 4 . ( 5 8 : 5 6 ) ;
c) 2 [ ( 7 - 3 3 : 3 2 ) : 2 2 + 99 ] - 100 □ 3 4 . 2 + 2 3 . 5 - 7 ( 5 2 - 5 ) ;
d) 207 : { 2 ^ 3 . [ ( 156 - 128 ) : 14 ] + 7 ] □ 117 : { [ 79 - 3 ( 3 ^ 3 - 17 ) ] : 7 + 2 }
Cho A = 2 + 22 + 23 + 24 +... + 219 + 220. Chứng tỏ rằng A chia hết cho 3
A = 2 + 22 + 23 + 24 + ... + 219 + 220
A = (2 + 22) + (23 + 24) +... + (219 + 220)
A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)
A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3
do đó A chia hết cho 3