các bạn giảng chi tiết hết sức giúp mình nha 100)tìm giá trị của a để hệ PT x+2y=5 cùng ax+3y=a
a)có 1 nghiệm duy nhất
b)vô nghiệm
các bạn giải chi tiết giúp mình nha 102)cho hệ pt mx+4y=10 cùng 6x+3y=m tìm giá trị của m để hệ pt
a)có NGHIỆM DUY NHẤT
b)vô nghiệm
c)vô số nghiệm☘
các bạn giảng chi tiết hết mức nha 101)cho hệ pt x-3y =m cùng 2x-6y=8 tìm giá trị của m để hệ pt VÔ NGHIỆM ,VÔ SỐ NGHIỆM☘
Kiến thức cần nhớ: \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\) hệ pt vô nghiệm ⇔\(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\)
hệ pt có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)
\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\) (1) ta có: a = 1; b = -3; c = m và a' = 2; b' = - 6; c' = 8
Hệ (1) vô nghiệm ⇔ \(\dfrac{1}{2}\) = \(\dfrac{-3}{-6}\) \(\ne\) \(\dfrac{m}{8}\)
⇔ \(\dfrac{1}{2}\) \(\ne\) \(\dfrac{m}{8}\)
⇔ m \(\ne\) 4
Hệ (1) có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{1}{2}=\dfrac{-3}{-6}=\dfrac{m}{8}\) ⇔ \(\dfrac{1}{2}\) = \(\dfrac{m}{8}\) ⇔ m = 8\(\times\)\(\dfrac{1}{2}\) = 4
Kết luận:
+ hệ phương trình đã cho vô nghiệm khi m \(\ne\) 4 và có vô số nghiệm khi m = 4
\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\)
\(D=-6+6=0\)
\(D_x=-6m+24\)
\(D_y=8-2m\)
Để hệ phương trình vô nghiệm
\(\Leftrightarrow D_x\ne0\cap D_y\ne0\left(D=0\right)\)
\(\Leftrightarrow-6m+24\ne0\cap8-2m\ne0\)
\(\Leftrightarrow m\ne4\)
Để hệ phương trình vô số nghiệm
\(\Leftrightarrow D=D_x=D_y=0\)
\(\Leftrightarrow m=4\) ( vì D luôn bằng 0)
các bạn giảng chi tiết giúp mình nha 103)cho pt 2x-y =3 hãy tìm 1 pt cùng với pt trên lập thành 1 hệ pt
a) có 1 nghiệm duy nhất
b)có vô số nghiệm
a) Hệ phương trình có nghiệm duy nhất là
\(\left\{{}\begin{matrix}2x-y=3\\x+4y=6\end{matrix}\right.\)
b) Hệ phương trình có vô số nghiệm là
\(\left\{{}\begin{matrix}2x-y=3\\4x-2y=6\end{matrix}\right.\)
Cho hệ phương trình:
\(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
a) Tìm m để hệ phương trình có nghiệm duy nhất, vô nghiệm, vô số nghiệm
b) Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
Cho hệ pt: ax+ y= 2a X-a= 1-ay 1/ a=2 giải hệ pt 2/ tìm a để a/ hệ có 1 nghiệm duy nhất, vô số nghiệm, vô nghiệm B/ hệ có nghiệm nguyên
a: \(\left\{{}\begin{matrix}ax+y=2a\\x-a=1-ay\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}ax+y=2a\\x+ay=a+1\end{matrix}\right.\)
Khi a=2 thì hệ sẽ là \(\left\{{}\begin{matrix}2x+y=4\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=6\end{matrix}\right.\)
=>-3y=-2 và x+2y=3
=>y=2/3 và x=3-2y=3-4/3=5/3
2:
a: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{a}{1}< >\dfrac{1}{a}\)
=>a^2<>1
=>a<>1 và a<>-1
Để hệ có vô số nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}=\dfrac{2a}{a+1}\)
=>a^2=1 và a^2+a=2a
=>a=1
Để hệ vô nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}< >\dfrac{2a}{a+1}\)
=>a^2=1 và a^2+a<>2a
=>a=-1
bài 1: Trong buổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ
bài 2:
1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
bài 3:
1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)
2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm
1. Giải hệ PT:
\(\hept{\begin{cases}2x+ay=-4\\ax-3y=5\end{cases}}\)
2. \(\hept{\begin{cases}2x-ay=b\\ax+by=1\end{cases}}\)
Tìm a,b để hệ có vô số nghiệm
3. \(\hept{\begin{cases}x+ay=a+1\\ax+y=3a-1\end{cases}}\)
a) Giải và biện luận hpt
b) Tìm a để hệ có nghiệm duy nhất thỏa mãn đk xy nhỏ nhất
Giúp mình với TT. Ai giải được nhanh, đúng nhất mình sẽ tick nha ^^
bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt
cho hệ pt x-2y=3-m (1) 2x+y=3(m+2) (2) a. giải hệ vs m=2 b. tìm tất các giá trị của m để hệ có nghiệm duy nhất c. tìm GTNN của A=x^2+y^2 trong đó x, y là nghiệm duy nhất của hệ d,. tìm m để hệ có nghiệm sao cho 5x-y=3
HPT {ax + 2y = 6
{ 7x + (a+5)y = 21
tìm a để hệ pt có nghiệm duy nhất; vô nghiệm; vô số nghiệm