Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tuệ Lâm
Xem chi tiết
Thanh Hoàng Thanh
22 tháng 1 2022 lúc 10:03

Bài toán 2:  Cho tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm. So sánh các góc của tam giác ABC.

Tam giác ABC cân tại A (gt). => Góc B = Góc C (Tính chất tam giác cân).

Ta có: Tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm (gt).

=> AB = AC = (16 - 4) : 2 = 6 (cm).

Xét tam giác ABC cân tại A:

Ta có: AB > BC (AB = 6 cm; BC = 4cm).

=> Góc C > Góc A.

Vậy trong tam giác ABC có Góc B = Góc C > Góc A.

 

Nguyễn Đào Hà Nhi
Xem chi tiết
Nguyễn Lương Bảo Tiên
Xem chi tiết
Nguyễn Trí Đức
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thien Tu Borum
19 tháng 4 2017 lúc 14:50

Hướng dẫn:

a) So sánh các cạnh của ∆BGG’ với các đường trung tuyến của ∆ABC BG cắt AC tại N

CG cắt AB tại E

G là trọng tâm của ∆ABC

=> GA = AM

Mà GA = GG’ ( G là trung điểm của AG ‘)

GG’ = AM

Vì G là trọng tâm của ∆ABC => GB = BN

Mặt khác : GM = AG ( G là trọng tâm )

AG = GG’ (gt)

GM = GG’

M là trung điểm GG’

Do đó ∆GMC = ∆G’MB vì :

GM = MG’

MB = MC

=> BG' = CG

mà CG = CE (G là trọng tâm ∆ABC)

=> BG' = CE

Vậy mỗi cạnh của ∆BGG' bằng đường trung tuyến của ∆ABC

b) So sánh các đường trung tuyến của ∆BGG' với cạnh ∆ABC

ta có: BM là đường trung tuyến ∆BGG'

mà M là trung điểm của BC nên BM = BC

Vì IG = BG (I là trung điểm BG)

GN = BG ( G là trọng tâm)

=> IG = GN

Do đó ∆IGG' = ∆NGA (cgc) => IG' = AN => IG' =

- Gọi K là trung điểm BG => GK là trung tuyến ∆BGG'

Vì GE = GC (G là trọng tâm ∆ABC)

=> GE = BG

mà K là trung điểm BG' => KG' = EG

Vì ∆GMC = ∆G'BM (chứng minh trên)

=> (lại góc sole trong)

=> CE // BG' => (đồng vị)

Do đó ∆AGE = ∆GG'K (cgc) => AE = GK

mà AE = AB nên GK = AB

Vậy mỗi đường trung tuyến ∆BGG' bằng một nửa cạnh của tam giác ABC song song với nó

Thien Tu Borum
19 tháng 4 2017 lúc 14:51

Hướng dẫn làm bài:

a)So sánh các cạnh của ∆BGG’ với các đường trung tuyến của ∆ABC

BG cắt AC tại N

CG cắt AB tại E

G là trọng tâm của ∆ABC

=> GA=23AMGA=23AM

Mà GA = GG’ (G là trung điểm của AG’)

=> GG′=23AMGG′=23AM

Vì G là trọng tâm của ∆ABC => GB=23BNGB=23BN

Mặt khác :

M là trung điểm GM=12AG(TT)AG=GG′(Gt)}=>GM=12GG′GM=12AG(TT)AG=GG′(Gt)}=>GM=12GG′

Do đó ∆GMC=∆G’MB vì ⎧⎪⎨⎪⎩GM=MG′MB=MCˆGMC=ˆG′MB{GM=MG′MB=MCGMC^=G′MB^

=> BG′=CGCG=23CEBG′=CGCG=23CE (G là trọng tâm tam giác ABC)

=>BG′=23CE=>BG′=23CE

Vậy mỗi cạnh của ∆BGG’ bằng 2323 đường trung tuyến của ∆ABC

b)So sánh các đường trung tuyến của ∆BGG’ với cạnh ∆ABC.

-Ta có: BM là đường trung tuyến ∆BGG’

Mà M là trung điểm của BC nên BM=12BCBM=12BC

IG=12BGIG=12BG (Vì I là trung điểm BG)

GN=12BGGN=12BG (G là trọng tâm)

=> IG = GN

Do đó ∆IGG’=∆NGA (c.g.c) => IG′=AN=>IG′=AC2IG′=AN=>IG′=AC2

-Gọi K là trung điểm BG => GK là trung điểm ∆BGG’

GE=12GCGE=12GC (G là trọng tâm tam giác ABC)

BG' = GC (Chứng minh trên)

=>GE=12BG=>GE=12BG

Mà K là trung điểm BG’ =>KG’ = EG

Vì ∆GMC = ∆G’MB (chứng minh trên)

=> ˆGCM=ˆG′BMGCM^=G′BM^ (So le trong)

=>CE // BG’ => ˆAGE=ˆAG′BAGE^=AG′B^ (đồng vị)

Do đó ∆AGE = ∆GG’K (c.g.c) =>AE = GK

AE=12AB⇒GK=12AB

Tâm Phạm Công
13 tháng 4 2018 lúc 20:12

Tính chất ba đường trung tuyến của tam giác

Phong Linh
Xem chi tiết
Wall HaiAnh
6 tháng 3 2018 lúc 20:37

Bài giải

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

a) Gọi M, N, E lần lượt là trung điểm của AB, BC, CA.

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vậy mỗi cạnh của ΔBGG' bằng 2/3 đường trung tuyến của ΔABC.

b) Gọi I, K lần lượt là trung điểm của BG và BG'.

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7Vậy mỗi đường trung tuyến của ΔBGG' bằng một nửa cạnh của ΔABC tương ứng với nó.~Hok tốt~  
Hà Pun
Xem chi tiết
Uyên Phạm Thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2023 lúc 21:16

a: góc BAC=180-120=60 độ

góc ABE=70/2=35 độ

góc AEB=180-60-35=85 độ

b: góc ABE<góc BAE<góc AEB

=>AE<BE<AB

c: góc ECB=180-70-60=50 độ

góc BEC=180-85=95 độ

Vì góc EBC<góc ECB<góc BEC

nên EC<EB<BC

Nguyễn Tuấn Vũ
Xem chi tiết
Đào Nguyễn Đức Vinh
Xem chi tiết