Cho tam giác ABC vuông tại A . Kẻ đường cao AH. Biết BH bằng 18cm; CH bằng 32cm. Tính các cạnh AB và AC.
Các bạn giải giúp mình bài này với,mình cảm ơn nhiều!
(Không cần vẽ hình đâu ạh!)
cho tam giác abc vuông tại a biết ac =18cm bc=30cm a)giải tam giác vuông b)kẻ đường cao AH. Tính CH, BH, AH
a, \(AB=\sqrt{BC^2-AC^2}=24\left(cm\right)\left(pytago\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=19,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=10,8\left(cm\right)\\AH=\sqrt{BH\cdot CH}=14,4\left(cm\right)\end{matrix}\right.\)
cho tam giác abc vuông tại a biết ac =18cm bc=30cm a)giải tam giác vuông b)kẻ đường cao AH.Tính CH, BH,AH
b: AH=14,4cm
BH=19,2cm
CH=10,8cm
Cho tam giác ABC vuông tại A. Biết AC=18cm, BC= 30cm a)giải tam giác vông b)Kẻ đường cao AH.Tính CH, BH, AH
b: AB=24cm
AH=14,4(cm)
BH=19,2(cm)
CH=10,8(cm)
Cho tam giác ABC vuông tại A , kẻ đường cao AH , biết BH=18cm; CH=32cm . Tính cạnh AB và AC
Áp dụng định lý Py-ta-go vào ΔABHta có :
AB^2=AH^2+BH^2
=AH^2+18^2
=AH^2+324
⇒AH^2=AB^2−324
Áp dụng định lý Py-ta-go vào ΔAHC ta có
AC^2=HC^2+AH^2
=322+(AB^2−324)
=1024−324+AB^2
=700+AB^2
⇒AC=√700+AB2
Áp dụng định lý Py-ta-go vào ΔABHta có :
AB ^ 2 = AH ^ 2 + BH ^ 2
=AH^2+18^2
=AH^2+324
⇒ AH ^ 2 = AB ^ 2−324
Áp dụng định lý Py-ta-go vào ΔAHC ta có
AC^2=HC^2+AH^2
= 322 + (AB ^ 2−324)
= 1024−324 + AB ^ 2
= 700 + AB ^ 2
⇒ AC = √700 + AB2.
HT
mk okie với lời giải của thắng mk làm giống bạn ý
cho tam giác abc vuông tại a biết ac =18cm bc=30cm giải tam giác vuông a)giải tam giác vuông b) kẻ đường cao AH.Tính C,BH,AH Giải giúp em cần gấp ạ
Cho tam giác ABC vuông tại A,đường cao AH (H thuộc BC).Biết AB=18cm,AC=24cm.
a)Chứng minh: AB2=BH . BC
b)Kẻ đường phân giác CD của tam giác ABC (D thuộc AB).Tính độ dài DA.
a.
Xét hai tam giác vuông HBA và ABC có:
\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{AHB}=\widehat{BAC}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)
\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=BH.BC\)
b.
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=30\left(cm\right)\)
Áp dụng định lý phân giác:
\(\dfrac{AD}{AC}=\dfrac{BD}{BC}\Rightarrow\dfrac{AD}{24}=\dfrac{18-AD}{30}\)
\(\Rightarrow AD=8\left(cm\right)\)
Cho tam giác ABC vuông tại A , đường cao AH ,biết: ad= 18cm, ac= 24cm.
a) Chứng minh : tam giác ABC đồng dạng tam giác HBA. từ đó suy ra AB^2 = BC.HB.
b) Tính độ dài các đoạn thẳng BC,AH,BH và CH.
c) Kẻ đường phân giác góc A cắt BC tại K. TÍnh tỉ số diện tích của 2 tam giác AKB và AKC
Giúp mik nha
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
ai biết giải giúp minh với:
Câu 1:Cho tam giác ABC có 3 góc nhọn,các đường cao AD,BE,CK cắt nhau tại H.chứng minh
a,tứ giác HECD nội tiếp
b,Tia DA là tia phân giác góc EDK
Cây 2:cho tam giác ABC vuông tai A,biết ab=6cm,ac=8cm
A.tính bc
B,kẻ đường cao AH,tính Ah
Câu 3:Cho tam giác abc vuông tại A,BIẾT AC=4cm,Bc=5cm.
A,Tính cạnh AB
B,kẻ đường cao AH,TÍNH AH
Câu 4:Cho tam giác vuông ABC,vuông tại A(H thuộc BC).bIẾT AB=12CM,AC=5CM.tính BH,CH
Câu 5:cho tam giác ABC vuông tại A,đường cao AH(H THUỘC BC).biết BC=18cm,BH=6cm.Tính độ dài các cạnh AB,AC
Cau 6:Cho tam giác ABC,vuông tại A,biết AB=4cm,đường cao AH=2CM,tính các góc và các cạnh còn lại cua tam giac.?
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ