( x-3)(x²-2xy+8y²) (5x+y)(3x²-7xy-2xy²)
a, \(A=-x^2+4xy^2-2xz+3y^2\)
b, \(B=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)
c, \(A=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)
Bài 3 : Tìm đa hức M , biết
a) M+(5x^2-2xy)=6x^2+9xy-y^2
b)M-(3xy-4y6^2)=x^2-7xy+8y^2
c)25x^2y-13x^2y+y^3)-M=11x^2y-2y^2
d)M+(12x^4-15x^2y+2xy^2+7)=0
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
=> M = (6x2 + 9xy - y2) - (5x2 - 2xy)
=> M = 6x2 + 9xy - y2 - 5x2 + 2xy = (6x2 - 5x2) + (9xy + 2xy) - y2 = x2 + 11xy - y2
b) Sửa đề lại đi nhé
c) (25x2y - 13x2y + y3) - M = 11x2y - 2y2
=> M = (25x2y - 13x2y + y3) - (11x2y - 2y2)
=> M = 25x2y - 13x2y + y3 - 11x2y + 2y2
=> M = x2y + y3 + 2y2
d) M = 0 - (12x4 - 15x2y + 2xy2 + 7) = -12x4 + 15x2y - 2xy2 - 7
a) Ta có : M = 6x2 + 9xy - y2 - (5x2 - 2xy)
= 6x2 + 9xy - y2 - 5x2 + 2xy
= x2 + 11xy - y2
b) Ta có M = x2 - 7xy + 8y2 - (3xy - 24y2)
= x2 - 7xy + 8y2 - 3xy + 24y2
= x2 - 10xy + 32y2
c) Ta có M = 25x2.y- 13x2y + y3 - (11x2y - 2y2)
= 25x2.y- 13x2y + y3 - 11x2y + 2y2
= x2y + y3 + 2y2
d) Ta có M = -(12x4 - 15x2y + 2xy2 + 7)
= -12x4 + 15x2y - 2xy2 - 7
GHPT :
\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\3x\left(y-7\right)+10=\sqrt{10x-2}+2\sqrt{8y-3}\end{matrix}\right.\)
\(ĐK:x\ge\dfrac{1}{5};y\ge\dfrac{3}{8}\)
\(PT\left(1\right)\Leftrightarrow\dfrac{3x^2-3y^2}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}=3\left(x+y\right)\\ \Leftrightarrow3\left(x+y\right)\left(\dfrac{x-y}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+y=0\\\dfrac{x-y}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x-y=\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}\\ \Leftrightarrow\left(x-y\right)=\dfrac{3\left(x^2-y^2\right)}{\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}}\\ \Leftrightarrow\left(x-y\right)\left[\dfrac{3\left(x+y\right)}{\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}}-1\right]=0\)
\(\Leftrightarrow x=y\)
Với \(x+y=0\Leftrightarrow x=-y\), thay vào PT 2
\(\Leftrightarrow3\left(-y\right)\left(y-7\right)+10=\sqrt{10\left(-y\right)-2}+2\sqrt{8y-3}\\ \Leftrightarrow3y\left(7-y\right)+10=\sqrt{-10y-2}+2\sqrt{8y-3}\)
ĐK: \(\left\{{}\begin{matrix}-10y-2\ge0\\8y-3\ge0\end{matrix}\right.\Leftrightarrow y\in\varnothing\)
Với \(x-y=0\Leftrightarrow x=y\), thay vào PT 2
\(\Leftrightarrow3x^2-21x+10=\sqrt{10x-2}+2\sqrt{8x-3}\left(x\ge\dfrac{3}{8}\right)\\ \Leftrightarrow3x^2-24x+9=\sqrt{10x-2}-\left(x+1\right)+2\sqrt{8x-3}-2x\)
\(\Leftrightarrow3\left(x^2-8x+3\right)=\dfrac{-x^2+8x-3}{\sqrt{10x-2}+\left(x+1\right)}+\dfrac{2\left(-x^2+8x-3\right)}{\sqrt{8x-3}+x}\\ \Leftrightarrow\left(x^2-8x+3\right)\left(3+\dfrac{1}{\sqrt{10x-2}+x+1}+\dfrac{2}{\sqrt{8x-3}+x}\right)=0\)
Dễ thấy ngoặc lớn vô nghiệm với \(x\ge\dfrac{3}{8}>0\)
\(\Leftrightarrow x^2-8x+3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4+\sqrt{13}\left(n\right)\\x=4-\sqrt{13}\left(n\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=4+\sqrt{13}\\y=4-\sqrt{13}\end{matrix}\right.\)
Vậy HPT có nghiệm \(\left(x;y\right)\in\left\{\left(4+\sqrt{13};4+\sqrt{13}\right);\left(4-\sqrt{13};4-\sqrt{13}\right)\right\}\)
Phân tích đa thức thành nhân tử :
1: 3x^2-2xy-4x+8y+7x^2 +1
2: 2x^2-7xy+3y^2+5xz-5yz+2z^2
3: x^2+y^2-x^2y^2+xy-x-y
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
Bài 1
Tìm đa thức M biết:
a) M+ (5x2-2xy )= 6x2 +9xy -y2
b ) (7xyz + 15x2yz2 - 2xy3 )+M=0
c ) (25u2v -13uv2 +u3 )-M= 11u2v -2u3
d ) M -( 4xy -3y2 )=x2 - 7xy + 8y2
e) (6x2 -3x2y ) +M = x2 +y2 -2xy2
f ) M- (2xy -4y2) = 5xy+ x2 -7y2
a: \(M=6x^2+9xy-y^2-5x^2+2xy=x^2+7xy-y^2\)
b: \(M=-7xyz-15x^2yz^2+2xy^3\)
c: \(M=25u^2v-13uv^2+u^3-11u^2v+2u^3=14u^2v-13uv^2+3u^3\)
d: \(M=x^2-7xy+8y^2+4xy-3y^2=x^2-3xy+5y^2\)
1) 8y^2-25=3xy+5x
2)xy-2y-3=3x-x^2
3)x^2+2y^2-3xy_4x-3y-26=0
4)x^2+3y^2+2xy-2x-4y-3=0
5)x^3+3x=y^3
6)x^4-2x^2y+7y^2=55
7)x^2y^2-2xy=x^2+16y^2
Phân tích đa thức thành nhân tử:
1, (x+y)^7-x^7-y^7
2, x^4+4x^2+5
3, x^2+2xy-8y^2+2xz+14yz-3z^2
4, 3x^2-22xy-4x+8y+7y^2+1
5, 12x^2+5x-12y^2+12y-10xy-3
6, 2x^2-7xy+3y^2+5xz-5yz+2z^2
7, x^2+3xy+2y^2+3xz+5yz+2z^2
8, x^2-8xy+15y^2+2x-4y-3
tìm đa thức M và N biết
a M- (3xy-4y2-2xy)=(x2-7xy+8y2)
b N + (x3-xyz+3x2y)=2x3+3xy-xy2
a, \(M-\left(3xy-4y^2-2xy\right)=\left(x^2-7xy+8y^2\right)\)
\(\Rightarrow M=\left(x^2-7xy+8y^2\right)+\left(3xy-4y^2-2xy\right)\)
\(\Rightarrow M=x^2-7xy+8y^2+3xy-4y^2-2xy\)
\(\Rightarrow M=x^2+\left[3xy-7xy-2xy\right]+\left[8y^2-4y^2\right]\)
\(\Rightarrow M=x^2-6xy+4y^2\)
b, \(N+\left(x^3-xyz+3x^2y\right)=2x^3+3xy-xy^2\)
\(\Rightarrow N=\left(2x^3+3xy-xy^2\right)-\left(x^3-xyz+3x^2y\right)\)
\(\Rightarrow N=2x^3+3xy-xy^2-x^3+xyz-3x^2y\)
\(\Rightarrow N=\left[2x^3-x^3\right]+3xy-xy^2+xyz-3x^2y\)
\(\Rightarrow N=x^3+3xy-xy^2+xyz-3x^2y\)
Tích mình nha!!!