chứng minh : \(\frac{1}{2}.\frac{3}{4}...\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)
\(Chứng\)\(minh:\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{2}{\sqrt{2n+1}}\)
Khi n=1, ta được \(\frac{1}{2}< \frac{1}{\sqrt{2.1+1}}\Leftrightarrow\frac{1}{2}< \frac{1}{\sqrt{3}}\) : đúng
giả sử mệnh đề đúng khi n=k\(\left(k\ge1\right)\), tức là \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2k-1}{2k}< \frac{1}{\sqrt{2k+1}}\)
Bây giờ ta chứng minh mệnh đề cũng đúng khi n=k+1, tức là ta phải chứng minh BĐT sau:
\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2k-1}{2k}.\frac{2k+1}{2\left(k+1\right)}< \frac{1}{\sqrt{2k+3}}\)
Thật vậy, theo giả thiết quy nạp \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2k-1}{2k}< \frac{1}{\sqrt{2k+1}}\)
\(\Leftrightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2k-1}{2k}.\frac{2k+1}{2\cdot\left(k-1\right)}< \frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2\left(k+1\right)}\)
Ta cần chứng minh \(\frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2\left(k+1\right)}< \frac{1}{\sqrt{2k+3}}\Leftrightarrow\frac{1}{\left(2k+1\right)}.\frac{\left(2k+1\right)^2}{4\left(k+1\right)^2}< \frac{1}{\left(2k+3\right)}\)
\(\Leftrightarrow\left(2k+1\right)^2\left(2k+3\right)< 4\left(k+1\right)^2\left(2k+1\right)\Leftrightarrow0< 2k+1\): luôn đúng
=>mệnh đề đúng với n=k+1
Vậy theo phương pháp quy nạp toán học \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với mọi n nguyên dương.
bạn ơi sao thay n=1 lại ra VT=1/2 ??
Chứng minh bất đẳng thức
Với n thuộc N, chứng minh \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n+1}}\)
Sử dụng kết quả trên, chứng minh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}< 2.\sqrt{2012}\)
Chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với n thuộc N*
Chứng minh :
\(\frac{2n-1}{2n}\le\sqrt{\frac{3n-2}{3n+1}}\). Suy ra : \(\frac{1}{2}\times\frac{3}{4}\times...\times\frac{2n-1}{2n}\le\frac{1}{\sqrt{3n+1}}\)
Chứng minh rằng: \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{\left(2n-1\right)}{2n}\le\frac{1}{\sqrt{3n+1}}\) ( n là số nguyên dương)
A=4cm,B=6,C=10
Nếu A=4,B=6,C=10 thì A+B+C=4+6+10=20
cho A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}..............\frac{2n-1}{2n}\)
Chứng minh A<\(\frac{1}{\sqrt{3n+1}}\)
Lời giải:
Bài toán cần bổ sung điều kiện $n\in\mathbb{N}>1$
Quy nạp.
Với $n=2,3$ thì bài toán hiển nhiên đúng
.....
Giả sử bài toán đúng đến $n$. Tức là:
$A_n=\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{1}{\sqrt{3n+1}}$
Ta cần chứng minh nó cũng đúng với $n+1$, tức là $A_{n+1}< \frac{1}{\sqrt{3n+4}}$
Thật vậy:
$A_{n+1}=A_n.\frac{2n+1}{2n+2}< \frac{1}{\sqrt{3n+1}}.\frac{2n+1}{2n+2}$
Giờ chỉ cần CM: $\frac{1}{\sqrt{3n+1}}.\frac{2n+1}{2n+2}< \frac{1}{\sqrt{3n+4}}$
$\Leftrightarrow (2n+1)^2(3n+4)< (2n+2)^2(3n+1)$
$\Leftrightarrow -n< 0$ (luôn đúng)
Vậy phép quy nạp hoàn thành. Ta có đpcm.
1.Rút gọn
\(A=\left(\frac{2\sqrt[3]{2xy}}{x^2y^2-\sqrt[3]{4}}+\frac{xy-\sqrt[3]{2}}{2xy+2\sqrt[3]{2}}\right)\cdot\frac{2xy}{xy+\sqrt[3]{2}}-\frac{xy}{xy-\sqrt[3]{2}}\)
2. Chứng minh
\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{n^2}{4n^2+1}\)
a/ Bạn coi lại đề, \(2\sqrt[3]{2xy}\) hay \(2\sqrt[3]{2}.xy\)
Như đề bạn ghi thì ko rút gọn được
b/ Xét \(\frac{x}{x^4+4}=\frac{x}{x^4+4x^2+4-\left(2x\right)^2}=\frac{x}{\left(x^2+2\right)^2-\left(2x\right)^2}\)
\(=\frac{x}{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}=\frac{1}{4}\left(\frac{1}{x^2+2-2x}-\frac{1}{x^2+2+2x}\right)\)
Thay \(x=2n-1\) ta được:
\(\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{1}{4}\left(\frac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\frac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\frac{1}{4}\left(\frac{1}{4\left(n-1\right)^2+1}-\frac{1}{4n^2+1}\right)\)
\(\Rightarrow VT=\frac{1}{4}\left(\frac{1}{4\left(1-1\right)^2+1}-\frac{1}{4.1^2+1}+\frac{1}{4.1^2+1}-\frac{1}{4.2^2+1}+...+\frac{1}{4\left(n-1\right)^2+1}-\frac{1}{4n^2+1}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{4n^2+1}\right)=\frac{1}{4}\left(\frac{4n^2}{4n^2+1}\right)=\frac{n^2}{4n^2+1}\)
\(Cm:\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2n-1}{2n}< \frac{2}{\sqrt{2n+1}}\)
Chứng minh rằng :
\(\frac{\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}}{\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2n-1}}< \frac{n}{n+1}\)
Chứng minh rằng :
\(\frac{\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}}{\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2n-1}}< \frac{n}{n+1}\)