Cho tam giác ABC cân tại A. Trên tia đối của AC lấy D,trên tia đối của AC lấy E sao cho AD=AE. Tứ giác DECB là hình gì? Vì sao
cho tam giác ABCD cân tại A . Trên tia đối của tia AC lấy điểm D , trên tia đối của tia AB lấy điểm E sao cho AD=AE . Tứ giác DECB là hình gì ? vì sao ?
Cho tam giác ABC cân tại A . Trên tí đối tia AC lấy D . Tia đối AB lấy E sao cho AD= AE . Tứ giác DECB là hình gì ?
(Bạn thông cảm nha. Mình vẽ hình không đẹp lắm)
Ta có \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(\(\Delta ABC\)cân tại A) (1)
và AD = AE (gt)
nên \(\Delta ADE\)cân tại A
=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\)(2)
Từ (1) và (2)
=> \(\widehat{ABC}=\widehat{AED}\)ở vị trí đồng vị (3)
=> BC // ED
nên tứ giác DEBC là hình thang (*)
Chứng minh tương tự, ta cũng có: \(\widehat{ACB}=\widehat{ADE}\)(4)
và \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A) (5)
Từ (3), (4) và (5) => \(\widehat{AED}=\widehat{ADE}\)(**)
Từ (*) và (**)
=> Tứ giác DEBC là hình thang cân
Là hình thang cân
~ Học tốt ~
cho tam giác abc cân tại A trên tia đối tia AC lấy điểm D, trên tia đối tia AB lấy điểm E sao cho AD = AE
Tứ giác DECB là hình gì ? Vì sao ?
giúp mik nhanh đi
Đó sẽ là hình thang cân DECB.
Trong bài tập này có 2 điều bạn phải làm rõ được:
DE // BC và DC = BE.
Chúng ta sẽ cùng làm từng điều một:
- DE // BC:
Giả thiết cho tam giác ABC cân A => AC = AB.
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc
=> góc ADE = ACB => DE // BC.
học tốt nhé cậu
Ta có:
Tam giác ABC cân tại A => ABCˆ=ACBˆ=(1800−BACˆ):2
AD=AE => tam giác ADE cân tại A => ADEˆ=AEDˆ=(1800−DAEˆ):2
Mà BACˆ=DAEˆ (đối đỉnh)
=> ABCˆ=ACBˆ=ADEˆ=AEDˆ
=> ABCˆ=AEDˆ
=> DE//BC
=> DECB là hình thang.
Cho tam giác ABC cân tại A. Trên tia đối của AC lấy điểm D, trên tia đối đó của AB lấy điểm E sao cho AD = AE, chứng minh tứ giác BDEC là hình thang cân
Bài 2: Cho tam giác đều ABC có canh 6cm. trên tia đối của tia AB lấy điểm D sao cho AD =2cm. trên tia đối của tia AC lấy điểm E sao cho AE = 2cm.
a. Tứ giác BEDC là hình gì? Vì sao?
b. Tính độ dài CD?
a: Xét ΔAED và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
\(\widehat{EAD}=\widehat{CAB}\)
Do đó: ΔAED\(\sim\)ΔACB
Suy ra: \(\widehat{AED}=\widehat{ACB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà EC=BD
nên BEDC là hình thang cân
cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm D sao cho: AD=AB, trên tia đối của tia AC lấy điểm E sao cho: AE=AC. Chứng minh rằng BCDE là hình chữ nhật
Xét tứ giác BCDE có
A là trung điểm của EC
A là trung điểm của BD
Do đó: BCDE là hình bình hành
mà \(\widehat{EDC}=90^0\)
nên BCDE là hình chữ nhật
cho tam giác ABC cân tại A, đường cao AM. Gọi I là trung điểm của AC. trên tia đối của tia IM lấy điểm K sao cho IM=IK a) chứng minh tứ giác AMCK là hình chữ nhật b)tứ giác ABMK là hình gì?Vì sao? c) trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh tứ giác ABEC là hình thoi. d) tìm điều kiển của tam giác ABC để tứ giác ABEC là hình vuông.
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
Cho tam giác ABC cân tại A. Trên tia đối của AB lấy D, trên tia đối của AC lấy E sao cho AD = AE. a) Chứng minh AD̂E = ÂBC. b) Chứng minh BCDE là hình thang cân
a: Xét ΔABC và ΔADE có
\(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)
\(\widehat{BAC}=\widehat{DAE}\)
Do đó: ΔABC\(\sim\)ΔADE
Suy ra: \(\widehat{ABC}=\widehat{ADE}\)
Cho tam giác ABC. Trên tia đối AB lấy điểm D sao cho AD=AC. Trên tia đối AC lấy điểm E sao cho AE=AC. Tứ giác BDEC là hình thang.
kham khảo nha
Câu hỏi của Tsumi Akochi - Toán lớp 8 | Học trực tuyến
vào thống kê hỏi đáp có màu xanh ở câu trả lời này ấn zô dố sẽ được
hc tốt