a: Xét ΔABC và ΔADE có
\(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)
\(\widehat{BAC}=\widehat{DAE}\)
Do đó: ΔABC\(\sim\)ΔADE
Suy ra: \(\widehat{ABC}=\widehat{ADE}\)
a: Xét ΔABC và ΔADE có
\(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)
\(\widehat{BAC}=\widehat{DAE}\)
Do đó: ΔABC\(\sim\)ΔADE
Suy ra: \(\widehat{ABC}=\widehat{ADE}\)
Cho tam giác ABC cân tại A. Trên tia đối của AC lấy điểm D, trên tia đối đó của AB lấy điểm E sao cho AD = AE, chứng minh tứ giác BDEC là hình thang cân
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
giúp mik vs ạ mik cho 5 sao
Cho tam giác OBD cân tại O, trên tia đối của OD lấy A,trên tia đối của OB lấy C sao cho OC=OA chứng minh Góc ACB= góc CBD. Từ đó suy ra ABCD là hình thang
Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D và E sao cho AD = AE.
a) Chứng minh rằng BDEC là hình thang cân
b) Tính các góc của hình thang cân đó, biết rằng \(\widehat{A}=50^0\)
Bài 2: Cho tam giác đều ABC có canh 6cm. trên tia đối của tia AB lấy điểm D sao cho AD =2cm. trên tia đối của tia AC lấy điểm E sao cho AE = 2cm.
a. Tứ giác BEDC là hình gì? Vì sao?
b. Tính độ dài CD?
Cho hình thang cân ABCD ( AB // CD và AB < CD ). AC cắt BD tại O. Trên tia đối của tia DC lấy điểm E sao cho ED = AB. Gọi M, N thứ tự là trung điểm của AB và CD.
a/ Chứng minh ∆AEC cân.
b/ Chứng minh M, O, N thẳng hàng.
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,AB
a) Chứng minh rằng tứ giác BCDE là hình thang cân
b) Chứng minh rằng tứ giác CNEQ là hình thang
c) Trên tia đối của tia MN lấy N' sao cho N'M = MN. Chứng minh rằng BN' vuông góc với BD ; EB = 2MN
d) Tam giác MNP là tam giác đều
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,AB
a) Chứng minh rằng tứ giác BCDE là hình thang cân
b) Chứng minh rằng tứ giác CNEQ là hình thang
c) Tam giác MNP là tam giác đều
cho tam giác abc cân tại A,lấy điểm D bất kỳ trên AB, lấy điểm E trên tia đối của tia CA sao cho CE=BD. từ D kẻ đường thẳng song song với AC cắt BC tại F
1.tam giác DBF là tam giác j?
2.c/m DCEF là hình bình hành?