d1: x-3y+1=0 và d2: x-2y-5=0 tìm số đo giữa hai đường thẳng và toạ độ giao điểm
Tìm số đo của góc giữa hai đường thẳng d1 và d2 lần lượt có phương trình: d1: 4x – 2y + 6 = 0 và d2: x – 3y + 1 = 0
Với d1: 4x – 2y + 6 = 0 có vecto pháp tuyến là: n1→(4;-2)
và d2: x – 3y + 1 = 0 có vecto pháp tuyến là: n2→(1;-3) ; ta có :
Vẽ hai đường thẳng: ( d 1 ): x + y = 2 và ( d 2 ): 2x + 3y = 0. Hỏi đường thẳng ( d 3 ): 3x + 2y = 10 có đi qua giao điểm của ( d 1 ) và ( d 2 ) hay không?
Vẽ đường thẳng ( d 1 ) là đồ thị hàm số y = -x + 2
Cho x = 0 thì y = 2 ⇒ (0; 2)
Cho y = 0 thì x = 2 ⇒ (2; 0)
Vẽ đường thẳng (
d
2
) là đồ thị hàm số
Cho x = 0 thì y = 0 ⇒ (0; 0)
Cho x = 3 thì y = -2 ⇒ (3; -2)
Hai đường thẳng ( d 1 ) và ( d 2 ) cắt nhau tại A(6; -4). Thay các giá trị x và y này vào phương trình đường thẳng ( d 3 ), ta có:
3.6 + 2.(-4) = 18 – 8 = 10.
Vậy x và y thỏa phương trình 3x + 2y = 10 nên (x; y) = (6; -4) là nghiệm của phương trình 3x + 2y = 10.
Lập phương trình của đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: x + 3y – 1 =0 d2: x – 3y - 5= 0 và vuông góc với đường thẳng d3: 2x - y + 7 = 0.
A. 3x + 6y - 5=0.
B. 6x + 12y - 5 = 0.
C. 6x+ 12y + 10 = 0.
D. x +2y + 10 = 0.
Trong mặt phẳng 0xy , cho 3 đường thẳng d1 : x+2y+1=0 ; d2 : x+y-5=0 và d3 : 2x+3y-10=0 . Phương trình đường thẳng delta đi qua giao điểm của d1d2 và song song với d3 là
Giao điểm A của d1 và d2 là nghiệm:
\(\left\{{}\begin{matrix}x+2y+1=0\\x+y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=-6\end{matrix}\right.\)
\(\Delta\) song song d3 nên nhận (2;3) là 1 vtpt, nên có pt:
\(2\left(x-11\right)+3\left(y+6\right)=0\Leftrightarrow2x+3y-4=0\)
Giao điểm của hai đường thẳng d 1 : x + 2 y = 1 và d 2 : 2 x + 3 y = - 5 là:
A. 13 ; 7
B. 13 ; - 7
C. - 13 ; 7
D. - 13 ; - 7
Giao điểm của hai đường thẳng d1 và d2 là nghiệm hệ phương trình:
x + 2 y = 1 2 x + 3 y = - 5
Ta tính các định thức:
D = 1 2 2 3 = 1 . 3 - 2 . 2 = - 1 ; D x = 1 2 - 5 3 = 1 . 3 - ( - 5 ) . 2 = 13 D y = 1 1 2 - 5 = 1 . ( - 5 ) - 2 . 1 = - 7
Suy ra: x = D x D = - 13 ; y = D y D = 7
Do đó hai đường thẳng đã cho cắt nhau tại điểm (-13; 7).
Cho hai đường thẳng: (d1):y=1/2x+2 và (d2):y=-x+2
a) vẽ (d1) và (d2) trên cùng một hệ trục toạ độ Oxy
b) gọi A là giao điểm của (d1) với trục hoành. Tìm toạ độ điểm A
c) gọi B là giao điểm của (d2) với trục tung. Tìm toạ đồ điểm B
d)gọi C là giao điểm của (d1) và (d2). Tìm toạ độ điểm C
Mông các bạn giải giúp mình gấp với ạ :3
a/ bạn tự làm
b/ \(\Rightarrow y=0\Rightarrow\dfrac{1}{2}x+2=0\) giải PT tìm hoành độ x
c/ \(\Rightarrow x=0\Rightarrow y=0+2=2\)
d/ \(\Rightarrow\dfrac{1}{2}x+2=-x+2\) Giải PT tìm hoành độ x của C rồi thay vào d1 hoặc d2 để tìm tung độ y của C
Tìm a và b biết đường thẳng y = ax + b đi qua hai điểm A(2;-1) và B (1;-3) b tìm toạ độ giao điểm của hai đường thẳng (d1) 2x+y=-3 và (d2) 3x-2y=-1
a: Theo đề, ta có hệ:
2a+b=-1 và a+b=-3
=>a=2 và b=-5
b; tọa độ giao là:
2x+y=-3 và 3x-2y=-1
=>x=-1 và y=-1
Cho dduongf thẳng d1: y=4x-3 vf dduongf thẳng d2: y=-x+2
Tìm toạ độ giao điểm của đường thẳngd1 và d2( = phép tính 0 cần vẽ)
x | 0 | 1 |
y=4x−3 | −3 | 1 |
x | 0 | 1 |
y=−x+2 | 2 | 1 |
Ta có phương trình hoàng độ giao điểm:
4x−3=−x+2
⇔5x=5
⇔x=1
⇒y=−x+2=−1+2=1
Vậy 2 đồ thị cắt nhau tại A(1;1)
\(x\) | \(0\) | \(1\) |
\(y=4x-3\) | \(-3\) | \(1\) |
\(x\) | \(0\) | \(1\) |
\(y=-x+2\) | \(2\) | \(1\) |
Ta có phương trình hoàng độ giao điểm:
\(4x-3=-x+2\)
\(\Leftrightarrow5x=5\)
\(\Leftrightarrow x=1\)
\(\Rightarrow y=-x+2=-1+2=1\)
Vậy 2 đồ thị cắt nhau tại \(A\left(1;1\right)\)
Cho 2 đường thẳng (d1) y=3x + 4 và (d2) x - 2y =0 một điểm A ( -1; 1)
a xét vị trí tương đối của A với 2 đường thẳng
b tìm giao điểm (d1) và ( d2)
c tìm m để (d3) : ( m-1)x + (m-2)y + m +1=0 đồng quy với (d1) và (d2)
a) Thay hoành độ và tung độ của A vào 2 pt đường thẳng (d1) và (d2), ta lần lượt được:
\(1=3\left(-1\right)+4\) (luôn đúng)
\(-1-2.1=0\) (vô lí)
Như vậy, \(A\in d_1;A\notin d_2\)
b) Gọi giao điểm của d1, d2 là \(B\left(x_0;y_0\right)\). Khi đó \(x_0,y_0\) là các số thỏa mãn \(\left\{{}\begin{matrix}y_0=3x_0+4\\x_0-2y_0=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y_0=6y_0+4\\x_0=2y_0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y_0=-\dfrac{4}{5}\\x_0=-\dfrac{8}{5}\end{matrix}\right.\)
Vậy giao điểm của d1 và d2 là \(B\left(-\dfrac{8}{5};-\dfrac{4}{5}\right)\)
c) Để đường thẳng d1, d2, d3 đồng quy thì d3 phải đi qua giao điểm của d1 và d2. Nói cách khác, d3 phải đi qua điểm \(B\left(-\dfrac{8}{5};-\dfrac{4}{5}\right)\)
\(\Leftrightarrow\left(m-1\right).\dfrac{-8}{5}+\left(m-2\right).\dfrac{-4}{5}+m+1=0\)
\(\Leftrightarrow\dfrac{21}{5}-\dfrac{7}{5}m=0\)
\(\Leftrightarrow m=3\)
Vậy \(m=3\) thỏa mãn ycbt.