Những câu hỏi liên quan
Buddy
Xem chi tiết
Hà Quang Minh
10 tháng 1 lúc 21:29

\(a)\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right) = {a^3} - {a^2}b + a{b^2} + b{a^2} - a{b^2} + {b^3} = {a^3} + {b^3}\)

\(b)\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) = {a^3} + {a^2}b + a{b^2} - b{a^3} - a{b^3} - {b^3} = {a^3} - {b^3}\)

Bình luận (0)
Buddy
Xem chi tiết
Hà Quang Minh
10 tháng 1 lúc 21:27

a) 

Cách 1: Diện tích hình vuông MNPQ là: \({a^2} + ab + ab + {b^2} = {a^2} + 2{\rm{a}}b + {b^2}\)

Cách 2: Độ dài cạnh của hình vuông MNPQ là: \(a + b\)

Diện tích của hình vuông MNPQ là: \(\left( {a + b} \right).\left( {a + b} \right) = {\left( {a + b} \right)^2}\)

b) \(\left( {a + b} \right)\left( {a + b} \right) = a.a + ab + ab + b.b = {a^2} + 2{\rm{a}}b + {b^2}\)     

c)  \(\left( {a - b} \right)\left( {a - b} \right) = a.a - a.b - a.b - b.\left( { - b} \right) = {a^2} - 2{\rm{a}}b + {b^2}\)            

Bình luận (0)
Blue Moon
Xem chi tiết
Kiệt Nguyễn
10 tháng 8 2020 lúc 22:11

Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\)thì ta có \(xy+yz+zx+xyz=4\)

Bất đẳng thức cần chứng minh trở thành: \(x^2+y^2+z^2+5xyz\ge4\)

Đặt \(x+y+z=p;xy+yz+zx=q;xyz=r\)thì \(q+r=4\)và ta cần chứng minh \(p^2-2q+5r\ge8\)

\(\Leftrightarrow p^2-2q+5\left(r-4\right)+12\ge0\Leftrightarrow p^2-7q+12\ge0\)

*) Nếu \(4\ge p\)thì theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\Leftrightarrow4\ge q+\frac{p\left(4q-p^2\right)}{9}\)

\(\Leftrightarrow q\le\frac{p^3+36}{4p+9}\)

Nên ta cần chỉ ra rằng \(p^2-\frac{7\left(p^3+6\right)}{4p+9}+12\ge0\Leftrightarrow\left(p-3\right)\left(p^2-6\right)\le0\)*đúng vì \(4\ge p\ge\sqrt{3q}\ge3\)*

*) Nếu \(p\ge4\)thì \(p^2\ge16\ge4q\Rightarrow p^2-2q+5r\ge p^2-2q\ge\frac{p^2}{2}\ge8\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = 1 hoặc \(\left(x,y,z\right)=\left(2,2,0\right)\)và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
11 tháng 8 2020 lúc 20:00

Tuyệt quá,

Bất đẳng thức \(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(c+a\right)^2}+\frac{c^2}{\left(a+b\right)^2}+\frac{kabc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}+\frac{1}{8}k\)

có hằng số k tốt nhất là 10.

Tức là bài toán này đúng với mọi \(k\le10\)!

Bình luận (0)
 Khách vãng lai đã xóa
Rhider
Xem chi tiết
Rhider
19 tháng 12 2021 lúc 20:14

ai giỏi ạ

Bình luận (0)
Buddy
Xem chi tiết
Hà Quang Minh
12 tháng 1 lúc 21:16

\(\left( {a + b} \right)\left( {a - b} \right) = a.a - ab + b.a - b.b = {a^2} - {b^2} + \left( { - ab + ba} \right) = {a^2} - {b^2}\)

Từ đó ta được \({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\)

Bình luận (0)
Rhider
Xem chi tiết
Akai Haruma
19 tháng 12 2021 lúc 20:39

Lời giải:

Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:

\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)

\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)

Ta có đpcm.

Bình luận (0)
Akai Haruma
19 tháng 12 2021 lúc 20:40

Lần sau bạn lưu ý đăng 1 bài 1 lần thôi. Đăng nhiều lần coi như spam và sẽ bị xóa không thương tiếc đấy nhé.

Bình luận (0)
Buddy
Xem chi tiết
Hà Quang Minh
12 tháng 1 lúc 21:40

\(\begin{array}{l}\left( {a + b} \right).\left( {{a^2} - ab + {b^2}} \right) = a.{a^2} - a.ab + a.{b^2} + b.{a^2} - b.ab + b.{b^2}\\ = {a^3} - {a^2}b + a{b^2} + {a^2} - a{b^2} + {b^3}\\ = {a^3} + {b^3}\end{array}\)

Bình luận (0)
Tùng Nguyễn
Xem chi tiết
Lê Song Phương
Xem chi tiết
Nguyễn Trang Anh
19 tháng 12 2021 lúc 20:08

mk lớp 7

Bình luận (0)
 Khách vãng lai đã xóa
Flower in Tree
19 tháng 12 2021 lúc 20:41

Dấu '' = '' không xảy ra

Áp dụng BĐT AM-GM:

Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:

\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)

\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)

Ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
Lê Song Phương
19 tháng 12 2021 lúc 21:11

Em thưa anh:

Áp dụng BĐT Cô-si cho hai số dương \(\frac{a}{a+1}\)và \(\frac{1}{c+1}\), ta có:

\(\sqrt{\frac{a}{\left(a+1\right)\left(c+1\right)}}=\sqrt{\frac{a}{a+1}.\frac{1}{c+1}}\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

Tương tự, ta có: \(\sqrt{\frac{b}{\left(a+1\right)\left(b+1\right)}}\le\frac{1}{2}\left(\frac{1}{a+1}+\frac{b}{b+1}\right)\)

\(\sqrt{\frac{c}{\left(c+1\right)\left(b+1\right)}}\le\frac{1}{2}\left(\frac{c}{c+1}+\frac{1}{b+1}\right)\)

Công vế theo vế, ta có: \(\sqrt{\frac{a}{\left(a+1\right)\left(c+1\right)}}+\sqrt{\frac{b}{\left(b+1\right)\left(a+1\right)}}+\sqrt{\frac{c}{\left(c+1\right)\left(b+1\right)}}\)

\(\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{1}{c+1}+\frac{b}{b+1}+\frac{1}{a+1}+\frac{c}{c+1}+\frac{1}{b+1}\right)\)

\(=\frac{1}{2}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{1}{2}\left(1+1+1\right)=\frac{3}{2}\)

\(\Leftrightarrow\sqrt{\frac{a}{\left(a+1\right)\left(c+1\right)}}+\sqrt{\frac{b}{\left(b+1\right)\left(a+1\right)}}+\sqrt{\frac{c}{\left(c+1\right)\left(b+1\right)}}\le\frac{3}{2}\)

Nhân cả hai vế với \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\)(vì a,b,c>0 nên BĐT lúc này không đổi chiều), ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa