Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết

a) \(5{{\rm{x}}^3} + 8{{\rm{x}}^3} = (5 + 8){x^3} = 13{{\rm{x}}^3}\)

b) \(10y^7 - 15y^7 = (10 - 15)y^7 = -5y^7\)

Buddy
Xem chi tiết

a) Đơn thức: \(2{{\rm{x}}^3}{y^4}\) có hệ số là 2

Đơn thức: \( - 3{{\rm{x}}^3}{y^4}\) có hệ số là -3

b) Hai đơn thức \(2{{\rm{x}}^3}{y^4}\) và \( - 3{{\rm{x}}^3}{y^4}\) có cùng phần biến là: \({{\rm{x}}^3}{y^4}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
9 tháng 9 2023 lúc 14:20

a) Ta có:

\(\frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{27{{\rm{x}}^3} - 1}} = \frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{\left( {3{\rm{x}} - 1} \right)\left( {9{{\rm{x}}^2} + 3{\rm{x}} + 1} \right)}} = \frac{1}{{3{\rm{x}} - 1}}\)

\(\frac{{{x^2} - 4{\rm{x}}}}{{16 - {x^2}}} = \frac{{x\left( {x - 4} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x\left( {4 - x} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x}}{{4 + x}}\)

b) Mẫu thức chung của hai phân thức nhân được ở câu a là: \(\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)\)

Nhân tử phụ của \(\frac{1}{{3{\rm{x}} - 1}}\) là: \(4 + x\)

Nhân tử phụ của \(\frac{{ - x}}{{4 + x}}\) là : \(3{\rm{x}} - 1\)

Khi đó:

\(\frac{1}{{3{\rm{x}} - 1}} = \frac{{4 + x}}{{\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)}}\)

\(\frac{{ - x}}{{4 + x}} = \frac{{ - x\left( {3{\rm{x}} - 1} \right)}}{{\left( {4 + x} \right)\left( {3{\rm{x}} - 1} \right)}}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
17 tháng 9 2023 lúc 15:22

a)

\(5{x^2} + 7{x^2} = (5 + 7){x^2} = 12{x^2}\);                             \(a{x^2} + b{x^2} = (a + b){x^2}\).

b) Muốn cộng hai đơn thức có cùng số mũ của biến, ta giữ nguyên biến và tính tổng của các hệ số có trong đơn thức.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
17 tháng 9 2023 lúc 15:24

a) \(2{x^2} - 6{x^2} = (2 - 6){x^2} =  - 4{x^2}\);                                                     \(a{x^k} - b{x^k} = (a - b){x^k}\).

b) Muốn trừ hai đơn thức có cùng số mũ của biến, ta giữ nguyên biến và tính hiệu của các hệ số có trong đơn thức.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
9 tháng 9 2023 lúc 14:30

\(\begin{array}{l}\frac{{2{{\rm{x}}^2} + 1}}{{4{\rm{x}} - 1}} = \frac{{8{{\rm{x}}^3} + 4{\rm{x}}}}{Q}\\ \Rightarrow Q = \frac{{\left( {8{{\rm{x}}^3} + 4{\rm{x}}} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}\\Q = \frac{{4{\rm{x}}\left( {2{{\rm{x}}^2} + 1} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}\\Q = 4{\rm{x}}\left( {4{\rm{x}} - 1} \right) = 16{{\rm{x}}^2} - 4{\rm{x}}\end{array}\)

Đáp án D

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
9 tháng 9 2023 lúc 14:20

a) Ta có: \({x^3} - 8 = \left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\)

\(4 - 2{\rm{x}} = 2\left( {2 - x} \right) =  - 2\left( {x - 2} \right)\)

Mẫu thức chung là: \( - 2\left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\)

Nhân tử phụ của \({x^3} - 8\) là -2

Nhân tử phụ cuae 4 – 2x là \({x^2} + 2{\rm{x}} + 4\)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:

\(\begin{array}{l}\frac{1}{{{x^3} - 8}} = \frac{{ - 2}}{{ - 2\left( {{x^3} - 8} \right)}}\\\frac{3}{{4 - 2{\rm{x}}}} = \frac{{3\left( {{x^2} + 2{\rm{x}} + 4} \right)}}{{\left( {4 - 2{\rm{x}}} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)}} = \frac{{3\left( {{x^2} + 2{\rm{x}} + 4} \right)}}{{ - 2\left( {{x^3} - 8} \right)}}\end{array}\)

b) Ta có: \(\begin{array}{l}{x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right)\\{x^2} + 2{\rm{x}} + 1 = {\left( {x + 1} \right)^2}\end{array}\)

Mẫu thức chung là: \({\left( {x + 1} \right)^2}\left( {x - 1} \right)\)

Nhân tử phụ của \(\frac{x}{{{x^2} - 1}}\) là: x + 1

Nhân tử phụ của \(\frac{1}{{{x^2} + 2{\rm{x}} + 1}}\) là x – 1

Khi đó:

\(\frac{x}{{{x^2} - 1}} = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}\)

\(\frac{1}{{{x^2} + 2{\rm{x}} + 1}} = \frac{{x - 1}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
9 tháng 9 2023 lúc 14:21

a) Ta có:

\(\begin{array}{l}\frac{{{x^2} + 5{\rm{x}}}}{{(x - 10)({x^2} + 10{\rm{x}} + 25)}} = \frac{{x\left( {x + 5} \right)}}{{\left( {x - 10} \right){{\left( {x + 5} \right)}^2}}} = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}}\left( {x + 5 \ne 0} \right)\\ \Rightarrow P = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}}\end{array}\)

\(\begin{array}{l}\frac{{{x^2} + 10{\rm{x}}}}{{{x^4} - 100{{\rm{x}}^2}}} = \frac{{x\left( {x + 10} \right)}}{{{x^2}\left( {{x^2} - 100} \right)}} = \frac{{x\left( {x + 10} \right)}}{{{x^2}\left( {x - 10} \right)\left( {x + 10} \right)}} = \frac{1}{{x\left( {x - 10} \right)}}\\ \Rightarrow Q = \frac{1}{{x\left( {x - 10} \right)}}\end{array}\)

b) MTC là: \(x\left( {x - 10} \right)\left( {x + 5} \right)\)

Nhân tử phụ của phân thức P là: x

Nhân tử phụ của phân thức Q là: (x + 5)

Khi đó:

\(P = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{x.x}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{{x^2}}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}}\)

\(Q = \frac{1}{{x\left( {x - 10} \right)}} = \frac{{1.\left( {x + 5} \right)}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{x + 5}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}}\)

Buddy
Xem chi tiết

a) Ta có:

\(\begin{array}{l}C = {\left( {3{\rm{x}} - 1} \right)^2} + {\left( {3{\rm{x}} + 1} \right)^2} - 2\left( {3{\rm{x}} - 1} \right)\left( {3{\rm{x}} + 1} \right)\\C = {\left( {3{\rm{x}} - 1} \right)^2} - 2\left( {3{\rm{x}} - 1} \right)\left( {3{\rm{x}} + 1} \right) + {\left( {3{\rm{x}} + 1} \right)^2}\\C = {\left( {3{\rm{x}} - 1 - 3{\rm{x}} - 1} \right)^2}\\C = {\left( { - 2} \right)^2} = 4\end{array}\)

Vậy giá trị của biểu thức C = 4 không phụ thuộc vào biến x

b) Ta có:

\(\begin{array}{l}D = {\left( {x + 2} \right)^3} - {\left( {x - 2} \right)^3} - 12\left( {{x^2} + 1} \right) \\D = \left( {x + 2 - x + 2} \right)\left[ {{{\left( {x + 2} \right)}^2} + \left( {x + 2} \right)\left( {x - 2} \right) + {{\left( {x - 2} \right)}^2}} \right] - 12{{\rm{x}}^2} - 12\\D = 4.\left( {{x^2} + 4{\rm{x}} + 4 + {x^2} - 4 + {x^2} - 4{\rm{x}} + 4} \right) - 12{{\rm{x}}^2} - 12\\D = 4.\left( {3{{\rm{x}}^2} + 4} \right) - 12{{\rm{x}}^2} - 12\\D = 12{{\rm{x}}^2} + 16 - 12{{\rm{x}}^2} - 12 = 4\end{array}\)

Vậy giá trị của biểu thức D = 4 không phụ thuộc vào biến x

c) Ta có:

\(\begin{array}{l}E = \left( {x + 3} \right)\left( {{x^2} - 3{\rm{x}} + 9} \right) - \left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\\E = \left( {{x^3} + {3^3}} \right) - \left( {{x^3} - {2^2}} \right)\\E = {x^3} + 27 - {x^3} + 8 = 35\end{array}\)

Vậy giá trị của biểu thức E = 35 không phụ thuộc vào biến x

d) Ta có:

\(\begin{array}{l}G = \left( {2{\rm{x}} - 1} \right)\left( {4{{\rm{x}}^2} + 2{\rm{x}} + 1} \right) - 8\left( {x + 2} \right)\left( {{x^2} - 2{\rm{x}} + 4} \right)\\G = \left[ {{{\left( {2{\rm{x}}} \right)}^3} - {1^3}} \right] - 8\left( {{x^3} + {2^3}} \right)\\G = 8{{\rm{x}}^3} - 1 - 8{{\rm{x}}^3} - 64 =  - 65\end{array}\)

Vậy giá trị của biểu thức G = -65 không phụ thuộc vào biến x.