Rút gọn A= x/√1 + √x-1 – x/√1 - √x-1 - x√x – x/1-√x (cứu với đang cần gấp =(((
A=\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{\left(x-1\right)^2}{x^2-1}\right).\frac{x+2003}{x}.\)
a) ĐK? Rút gọn A?
Giusp mik với mik đang cần gấp ! thanks nhìu ạ !
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{\left(x-1\right)^2}{x^2-1}\right).\frac{x+2003}{x}\)ĐKXĐ: \(x\ne-1;0;1\)
\(A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}.\frac{x+2003}{x}\)
\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}.\frac{x+2003}{x}\)
\(A=\frac{x+1}{x-1}.\frac{x+2003}{x}\)
\(A=\frac{x^2+2004x+2003}{x^2-x}\)
)
(a) Tính giá trị biểu thức A khi x=4
b) Rút gọn biểu thức A và tìm giá trị lớn nhất của A
Giúp mình với ạ mình đang cần gấp
bài 1 cho buổi thức
A= (x-3 + 1/x-1) .( x-1-1/x-1)
a, Rút gọn A
b, tìm giá trị của x để A >5
bài 2 cho biểu thức
A= (x/x2-4 + 1/x+2 - 2/x-2) : (1- x/x+2)
a, Rút gọn A
b, thính A khi x=-4
giúp mình với mình đang cần gấp tối đi học rồi
\(2;A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(\frac{1-x}{x+2}\right)\)
\(ĐKXĐ:\hept{\begin{cases}x^2-4\ne0\\1-x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne\pm2\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{1-x}\)
\(A=\left(\frac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+2}{1-x}\)
\(A=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1-x}=\frac{-6}{\left(x-2\right)\left(1-x\right)}\)
b, Khi x = -4
\(A=\frac{-6}{\left(-4-2\right)\left(1+4\right)}=\frac{-6}{-6.5}=\frac{1}{5}\)
Rút gọn biểu thức sau:
P= x^2+căn x/x-căn x+1 - 2(x+căn x)/căn x + 2(x-1)/căn x-1
Mình đang cần gấp ạ
Ta có: \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2\left(x+\sqrt{x}\right)}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x+\sqrt{x}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x+\sqrt{x}\)
rút gọn M=|1 1/5-x|+|x-1/5|- 3 1/5 trong các trường hợp sau:
a) x lớn hơn hoặc bằng 1 1/5
b) x bé hơn hoăc bằng 1/5
c) 1/5<x<1 1/5
Giúp mình với mình đang cần gấp
\(A = {3x + 2√x -3 \over x+√x -2} - {√x+1\over√x+2 }+{√x-2 \over1-√x}\)
Rút gọn giúp mình với, mình đang cần gấp lắm
Cho biểu thức A= (1+x^2/x^2+1):(1/x-1-2x/x^3+x-x^2-1)
a) Rút gọn A
b) Tính giá trị của A tại x= -1/2
c)Tìm x để A<1
d) Tìm các giá trị nguyên của x để A có giá trị nguyên
Mình đang cần gấp ak
a) Ta có: \(A=\left(1+\dfrac{x^2}{x^2+1}\right):\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3+x-x^2-1}\right)\)
\(=\dfrac{2x^2+1}{x^2+1}:\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\)
\(=\dfrac{2x^2+1}{x^2+1}\cdot\dfrac{\left(x-1\right)\left(x^2+1\right)}{\left(x-1\right)^2}\)
\(=\dfrac{2x^2+1}{x-1}\)
b) Thay \(x=-\dfrac{1}{2}\) vào A, ta được:
\(A=\left(2\cdot\dfrac{1}{4}+1\right):\left(\dfrac{-1}{2}-1\right)\)
\(=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)
c) Để A<1 thì A-1<0
\(\Leftrightarrow\dfrac{2x^2+1}{x-1}-1< 0\)
\(\Leftrightarrow\dfrac{2x^2+1-x+1}{x-1}< 0\)
\(\Leftrightarrow\dfrac{2x^2-x+2}{x-1}< 0\)
\(\Leftrightarrow x-1< 0\)
hay x<1
Mọi người giúp với ạ, mình đang cần gấp
A=\((\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x})(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}})\)
Rút gọn A
Ta có: \(A=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right).\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\) ( ĐK: \(x\ne0,\)\(x\ne9,\)\(x\ge3\))
\(\Leftrightarrow A=\frac{\sqrt{x}.\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\sqrt{x}-9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\left(\sqrt{x}-3\right)}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3.\left(2\sqrt{x}+4\right)}{\left(9-x\right).\sqrt{x}}\)
\(\Leftrightarrow A=\frac{6\sqrt{x}+12}{9\sqrt{x}-x}\)