Tìm x biết
a) ( x - 14) - 20 = 0
Tìm các số nguyên x, biết
a) X thuộc B(14); 20 < x < 80
b) 70 : x; 80 : x và x > 8
c) 126 : x; 210 : x và 15 < x < 30
a)
B(14) = 0; 14; 28; 42; 56; 70; 84; …..
Vì 20 < x < 80 => x ∈ { 28; 42; 56; 70.}
b)
Vì 70 chia hết cho x ѵà 80 chia hết cho x => x ∈ ƯC(70; 80)
Phân tích:
70 = 2 .5 .7
80 = 24 .5
ƯCLN (70; 80) = 2.5=10
ƯC ( 70; 80) = Ư(10) ={1;2;5;10}
Mà x > 8 => x = 10
c)
Vì 126 chia hết cho x ѵà 210 chia hết cho x => x ∈ ƯC(126; 210)
Phân tích
126 = 2 .3² .7
210 = 2 .3 .5 .7
ƯCLN(126; 210) = 2 .3 .7 = 42
ƯC(126; 210) = { 1; 2; 3; 6; 7; 14; 21; 42 }
Vì 15 < x < 30 => x = 21
a) \(B\left(14\right)=\left\{0;14;28;42;56;70;84;.......\right\}\)
Vì \(20< x< 8\Rightarrow x\in\left\{28;42;56;70\right\}\)
b) Vì 70 chia hết cho x và 80 chia hết cho x nên \(\Rightarrow x\inƯC\left(70;80\right)\)
Phân tích :
\(70=2.5.7\)
\(80=2^4.5\)
Mà \(x>8\Rightarrow x=10\)
c) Vì 126 chia hết cho x và 210 chia hết cho x nên \(\Rightarrow x\inƯC\left(126;210\right)\)
Phân tích :
\(126=2.3^2.7\)
\(210=2.3.5.7\)
\(ƯC\left(126;210\right)=\left\{1;2;3;6;7;14;21;42\right\}\)
\(ƯCLN\left(126;210\right)=2.3.7=42\)
Theo đề : \(x\in\left(>15< 30\right)\Rightarrow x=21\)
Tìm x, biết
a) 575 – (6X + 70) = 445
b) (32.15) : 2 = (X +70) : 14 – 40
c) (X – 15) -75 = 0 d) 420 + 65.4 = (X + 175):5 +30
e) X – 4867 = (175.2050.70) : 25 + 23 f) [(X + 32) -17].2 = 42
g) 96 – 3.(X+1)=42 h) 165 – 19.(35 : X + 3) = 13
\(a,\Rightarrow6x+70=130\Rightarrow6x=60\Rightarrow x=10\\ b,\Rightarrow240=\left(x+70\right):14-40\\ \Rightarrow\left(x+70\right):14=280\\ \Rightarrow x+70=3920\Rightarrow x=3850\\ c,\Rightarrow x-15=75\Rightarrow x=90\\ d,\Rightarrow\left(x+175\right):5=680-30=650\\ \Rightarrow x+175=3250\Rightarrow x=3075\\ e,\Rightarrow x-4867=1004523\Rightarrow x=1009390\\ f,\Rightarrow x+32-17=24\Rightarrow x=9\\ g,\Rightarrow3\left(x+1\right)=54\Rightarrow x+1=18\Rightarrow x=17\\ h,\Rightarrow19\left(35:x+3\right)=152\\ \Rightarrow35:x+3=8\Rightarrow35:x=11\Rightarrow x=\dfrac{35}{11}\)
Câu 2: Tìm x biết
a. \(\sqrt{\left(2x-3\right)^2}=7\)
b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a) \(\sqrt{\left(2x-3\right)^2}=7\)
\(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b) \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\left(đk:x\ge-2\right)\)
\(\Leftrightarrow8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}=20\)
\(\Leftrightarrow5\sqrt{x+2}=20\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
c) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
a. \(\sqrt{\left(2x-3\right)^2}=7\)
<=> \(\left|2x-3\right|=7\)
<=> \(\left[{}\begin{matrix}2x-3=7\left(x\ge\dfrac{3}{2}\right)\\-2x+3=7\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2x=10\\-2x=4\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=5\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\) ĐK: \(x\ge-2\)
<=> \(\sqrt{64\left(x+2\right)}-\sqrt{25\left(x+2\right)}+\sqrt{4\left(x+2\right)}-20=0\)
<=> \(8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}-20=0\)
<=> \(\sqrt{x+2}.\left(8-5+2\right)-20=0\)
<=> \(5\sqrt{x+2}=20\)
<=> \(\sqrt{x+2}=4\)
<=> \(\left(\sqrt{x+2}\right)^2=4^2\)
<=> \(\left|x+2\right|=16\)
<=> \(\left[{}\begin{matrix}x+2=16\left(x\ge-2\right)\\x+2=-16\left(x< -2\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=14\left(TM\right)\\x=-18\left(TM\right)\end{matrix}\right.\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\) ĐK: \(x\ge3\)
<=> \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
<=> \(\sqrt{x-3}.\sqrt{x+3}-3\sqrt{x-3}=0\)
<=> \(\left(\sqrt{x+3}-3\right).\sqrt{x-3}=0\)
<=> \(\left[{}\begin{matrix}\sqrt{x+3}-3=0\\\sqrt{x-3}=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=6\\x=3\end{matrix}\right.\)
a) I2x-3I=7
2x-3=7 =>x=5
2x-3=-7 =>x=-2
b) \(8\sqrt{3x}-5\sqrt{3x}+2\sqrt{3x}=20\)
5\(\sqrt{3x}=20\)
3x=16 =>x=16/3
c) vì câu c dài nên mình chỉ cho đáp án thôi là 0,3,6
vì \(\sqrt{ }\) của 1 số luôn dương nên 3,6 thỏa mãn
Bài 10. Tìm x, biết
a) (x+2)2-x(x+3)+5x=-20 c) (x2-1)3-(x4+x2+1)(x2-1)=0
b) 5x3-10x2+5x=0 d) (x+1)3-(x-1)3-6(x-1)2=-19
Bài 10:
a) (x+2)2 -x(x+3) + 5x = -20
=> x2 + 4x + 4 - x2 - 3x + 5x = -20
=> 6x = -20 + (-4)
=> 6x = -24
=> x = -4
b) 5x3-10x2+5x=0
=>5x(x2-2x+1)=0
=>5x(x-1)2 =0
=> 5x=0 hoặc (x-1)2=0
=>x=0 hoặc x=1
c) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
=> (x2 - 1)[(x2 - 1)2 - (x4 + x2 + 1)] = 0
<=> (x2 - 1)(x4 - 2x2 + 1 - x4 - x2 - 1) = 0
<=> (x2 - 1)(-3x2) = 0
<=> (x2 - 1)=0 hoặc (-3x2) =0
<=> x2=1 hoặc x2=0
<=> x=−1;1 hoặc x=0
d)
(x+1)3−(x−1)3−6(x−1)2=-19
⇔x3+3x2+3x+1−(x3−3x2+3x−1)−6(x2−2x+1)+19=0
⇔x3+3x2+3x+1−x3+3x2−3x+1−6x2+12x−6+19=0
⇔12x+13=0⇔12x+13=0
⇔12x=-13
⇔x=-23/12
Học tốt nhé:333
tìm x biết
a)x^2 + 3 x = 0
\(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
\(x^2+3x=0\)
\(x\left(x+3\right)=0\)
x = 0 hoặc x +3 = 0
=> x = 0 hoặc x = -3
Vậy ...
x(x+3)=0
=> x=0 hoặc x=-3
=> x thuộc { 0; 3}
tìm x,biết
a)0,(31)+x=0,3(7) b)0,(4).x=\(\dfrac{5}{6}\)
a) \(0,\left(31\right)+x=0,3\left(7\right)\\ \Rightarrow\dfrac{31}{99}+x=\dfrac{17}{45}\\ \Rightarrow x=\dfrac{17}{45}-\dfrac{31}{99}=\dfrac{32}{495}=0,0\left(64\right)\)
Vậy \(x=0,0\left(64\right)\)
b) \(0,\left(4\right)\cdot x=\dfrac{5}{6}\\ \Rightarrow\dfrac{4}{9}\cdot x=\dfrac{5}{6}\\ \Rightarrow x=\dfrac{5}{6}:\dfrac{4}{9}\\ \Rightarrow x=\dfrac{5}{6}\cdot\dfrac{9}{4}\\ \Rightarrow x=\dfrac{15}{8}=1,875\)
Vậy \(x=1,875\)
Tìm x biết
a) x2 - 25=0
b) x (x + 7) + x + 7=0
a) x= + - 5
b) x\(\in\)\(\left\{-1;-7\right\}\)
a/ \(x^2-25=0\)
\(\Rightarrow\left(x+5\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\Rightarrow x=-5\\x-5=0\Rightarrow x=5\end{matrix}\right.\)
b/ \(x\left(x+7\right)+x+7=0\)
\(x\left(x+7\right)+\left(x+7\right)=0\)
\(\left(x+7\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+7=0\Rightarrow x=-7\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
a) x^2 - 25 = 0 <=> (x + 5)(x - 5) = 0
<=> x = -5 hoặc x = 5
b) x(x + 7) + x + 7 = 0 <=> (x + 7)(x + 1) = 0
<=> x = -7 hoặc x = -1
tìm x biết
a) x^ 3 + x ^2 + x + 1 = 0;
b) x^ 3 - x^ 2 - x + 1 = 0;
c) x^ 2 - 6x + 8 = 0; .
b) \(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow x-1=0\) hoặc \(x+1=0\)
\(\Leftrightarrow x=1\) hoặc \(x=-1\)
c) \(x^2-6x+8=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
a) \(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
(do \(x^2+1\ge1>0\))
a: Ta có: \(x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
b: Ta có: \(x^3-x^2-x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c: Ta có: \(x^2-6x+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
tìm số tự nhiên x biết
a)2436:x=12
b)6.x-5=613
c)12.(x-1)=0
d)0:x=0
a) 2436 : x = 12
\(\Rightarrow\) x = 2436 : 12
\(\Rightarrow\) x = 203
b) 6x - 5 = 613
\(\Rightarrow\) 6x = 618
\(\Rightarrow\) x = 103
c) 12(x - 1) = 0
\(\Rightarrow\) x - 1 = 0
\(\Rightarrow\) x = 1
d) 0 : x = 0 (đúng \(\forall\)x \(\in\) N)
\(\Rightarrow\) x \(\in\) N
a) Ta có: 2436:x=12
nên x=2436:12
hay x=203
b) Ta có: 6x-5=613
nên 6x=618
hay x=103
c) Ta có: 12(x-1)=0
mà 12>0
nên x-1=0
hay x=1
d) Ta có: 0:x=0
nên \(x\in R;x\ne0\)
a.2436:x=12
x=2436:12
x=203
b.6x-5=613
6x =613+5
6x =618
x =618:6
x=103
c, 12(x-1)=0
x-1=0:12
x-1=0
x= 0+1
x=1
d, x:0=0
Vì theo quy luật, 0 chia số nào cx bằng 0. Suy ra x là số bất kỳ.
Nhớ like cho mik nha