cho mình hỏi tìm giá trị x ,y thoả mãn 1/x -1/y =1/7
Các bạn giúp mình nhé, mình đang cần gấp.
a) Tìm số x, y sao cho ( x-2 ).( y+1 )=7 và x lớn hơn y
b) Tìm số nguyên thoả mãn biết 3x+8 chia hết cho x-1
c) Tìm số nguyên thoả mãn để A đạt giá trị nhỏ nhất:
A= | x-2019 | + 2020
a)
(x-2)(y+1)=7
=> x-2 ; y+1 thuộc Ư(7)={-1,-7,1,7}
Ta có bảng:
x-2 | -1 | -7 | 1 | 7 |
y+1 | -7 | -1 | 7 | 1 |
x | 1 | -5 | 3 | 9 |
y | -8 | -2 | 6 | 0 |
Vậy ta chỉ có 2 cặp x,y thõa mãn điều kiện x>y; là (1,-8) và (9,0)
b)
3x+8 chia hết cho x-1
<=> 3x-3+11 chia hết cho x-1
<=> 3(x-1)+11 chia hết cho x-1
<=> 3(x-1) chia hết x-1; 11 chia hết cho x-1
=> x-1 \(\in\)Ư(11)={-1,-11,1,11}
<=>x\(\in\){0,-10,2,12}
Điều kiện của $x,y$ là gì? Bạn cần bổ sung thêm mới tính toán được
cho x,y là hai số dương thoả mãn x+y=10, S=1/x+1/y. Tìm giá trị nhỏ nhất của x,y. Cảm ơn ạ.
Theo bđt cauchy schwarz dang engel
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}=\dfrac{4}{10}=\dfrac{2}{5}\)
Dấu ''='' xảy ra khi \(x=y=5\)
Vậy ...
a, cho x, y là 2 số thoả mãn (2x - y + 7)\(^{2022}\) + |x - 1|\(^{2023}\) ≤ 0. Tính giá trị của biểu thức: P = x\(^{2023}\) + (y - 10)\(^{2023}\)
b, Tìm số tự nhiên x, y biết 25 - y\(^2\) = 8(x = 2023)\(^2\)
c, Tìm giá trị nhỏ nhất của biểu thức: P = (|x - 3| + 2)\(^2\) + |y + 3| + 2019
d, Tìm cặp số nguyên x, y biết: (2 - x)(x + 1) = |y + 1|
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
1 a) Tìm các giá trị x,y,z,t thoả mãn các điều kiện sau:
x^2+y^2+z^2+t^2=1 và xy+yz+tx=1
b) Tìm các giá trị x,y,z thoả mãn các điều kiện : x+y+z=6 và x^2+y^2+z^2=12
Cho x,y là các số thực thoả mãn \(X^2+y^2=1\). Tìm giá trị lớn nhất, nhỏ nhất của (x+y)\(^2\)
Tìm GTLN:
Xét hiệu $2.(x^2+y^2)-(x+y)^2=2.(x^2+y^2)-x^2-y^2-2xy=x^2-2xy+y^2=(x-y)^2 \geq 0$
Nên $(x+y)^2 \leq 2.(x^2+y^2)=2$ (do $x^2+y^2=1$)
Dấu $=$ xảy ra $⇔(x-y)^2=0;x^2+y^2=1⇔x=y;x^2+y^2=1⇔x=y=\dfrac{1}{\sqrt[]2}$
Tìm Min:
Có $(x+y)^2 \geq 0$ với mọi $x;y$
Dấu $=$ xảy ra $⇔(x+y)^2=0;x^2+y^2=0⇔x=-y;x^2+y^2=1⇔x=\dfrac{1}{\sqrt[]2};y=-\dfrac{1}{\sqrt[]2}$ và hoán vị
Cho x ≥ –1, y ≥ 1 thoả mãn \(\sqrt{x+1}+\sqrt{y-1}=\sqrt{2\left(x-y\right)^2+10x-6y+8}\)
Tìm giá trị nhỏ nhất của biểu thức P = x4 + y2 – 5(x + y) + 2020.Cho x ≥ –1, y ≥ 1 thoả mãn .
Ta có: \(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)
\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+8}\le\sqrt{2\left(x+y\right)}\)
\(\Leftrightarrow2\left(x-y\right)+10x-6y+8\le2\left(x+y\right)\)
\(\Leftrightarrow2\left(x-y\right)^2+8\left(x-y\right)+8\le0\)
\(\Leftrightarrow2\left(x-y+2\right)^2\le0\)
Dấu = xảy ra khi \(\hept{\begin{cases}x+1=y-1\\x-y+2=0\end{cases}\Leftrightarrow}y=x+2\)
Thế vào P ta được
\(P=x^4+\left(x+2\right)^2-5x-5\left(x+2\right)+2020\)
\(=x^4+2x^2-6x+2014\)
\(=\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)
Vậy GTNN là P = 2010 đạt được khi x = 1, y = 3
Ta có: √x+1+√y−1≤√2(x+y)
⇔√2(x−y)2+10x−6y+8≤√2(x+y)
⇔2(x−y)+10x−6y+8≤2(x+y)
⇔2(x−y)2+8(x−y)+8≤0
⇔2(x−y+2)2≤0
Dấu = xảy ra khi {
x+1=y−1 |
x−y+2=0 |
⇔y=x+2
Thế vào P ta được
P=x4+(x+2)2−5x−5(x+2)+2020
=x4+2x2−6x+2014
=(x2−1)2+3(x−1)2+2010≥2010
Vậy GTNN là P = 2010 đạt được khi x = 1, y = 3
Thế vào P ta được
\(P=x^4+x^2-6x+2014\) mới đúng
Cho các số dương x, y thoả mãn x + y = 1. Tìm giá trị nhỏ nhất của\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\)
Theo bđt Cauchy schwarz dạng Engel
\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ)
\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)
Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
Cho mình hỏi bạn Nguyễn Huy Tú, hãy giải thích cho mình hiểu về bất đẳng thức Cauchy schawarz (Định lý, chứng minh,..). Đây là lần đầu tiên mình được nghe tên về bất đẳng thức này nên mong bạn giải thích dễ hiểu. Chúc bạn ngày một thành công hơn trong con đường học vấn của mình !
cho x, y là các số thực nguyên thoả mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức B= 1/(x^3+y^3) +1/xy