Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {x + 4} }&{khi\,\,x \ge 0}\\{2\cos x}&{khi\,\,x < 0}\end{array}} \right.\).
Xét tính liên tục của hàm số:
a) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + 1}&{khi\,\,x \ge 0}\\{1 - x}&{khi\,\,x < 0}\end{array}} \right.\) tại điểm \(x = 0\).
b) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + 2}&{khi\,\,x \ge 1}\\x&{khi\,\,x < 1}\end{array}} \right.\) tại điểm \(x = 1\).
a) Dễ thấy x = 0 thuộc tập xác định của hàm số.
\(f\left( 0 \right) = {0^2} + 1 = 1\)
Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} + 1} \right) = {0^2} + 1 = 1\)
\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {1 - x} \right) = 1 - 0 = 1\)
Vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 1\) nên \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1 = f\left( 0 \right)\).
Vậy hàm số liên tục tại điểm \(x = 0\).
b)Dễ thấy x = 1 thuộc tập xác định của hàm số.
\(f\left( 1 \right) = {1^2} + 2 = 3\)
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 2} \right) = {1^2} + 2 = 3\)
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} x = 1\)
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).
Vậy hàm số không liên tục tại điểm \(x = 1\).
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + 1}&{khi\,\,1 < x \le 2}\\k&{khi\,\,x = 1}\end{array}} \right.\).
a) Xét tính liên tục của hàm số tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).
b) Tìm \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) và so sánh giá trị này với \(f\left( 2 \right)\).
c) Với giá trị nào của \(k\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\)?
a) Với mọi điểm \({x_0} \in \left( {1;2} \right)\), ta có: \(f\left( {{x_0}} \right) = {x_0} + 1\).
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = {x_0} + 1\).
Vì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right) = {x_0} + 1\) nên hàm số \(y = f\left( x \right)\) liên tục tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).
b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1} \right) = 2 + 1 = 3\).
\(f\left( 2 \right) = 2 + 1 = 3\).
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\).
c) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 1 + 1 = 2\)
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k \Leftrightarrow 2 = k \Leftrightarrow k = 2\)
Vậy với \(k = 2\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\).
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + x + 1,\,\,x \ne 4\\2a + 1,\,\,x = 4\end{array} \right.\)
a) Với a = 0, xét tính liên tục của hàm số tại x = 4.
b) Với giá trị nào của a thì hàm số liên tục tại x = 4?
c) Với giá trị nào của a thì hàm số liên tục trên tập xác định của nó?
a) Với a = 0, tại x = 4, ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 4} f\left( x \right) = \mathop {\lim }\limits_{x \to 4} \left( {{x^2} + x + 1} \right) = {4^2} + 4 + 1 = 21\\f\left( 4 \right) = 2.0 + 1 = 1\\ \Rightarrow \mathop {\lim }\limits_{x \to 4} f\left( x \right) \ne f\left( 4 \right)\end{array}\)
Do đó hàm số không liên tục tại x = 4.
b) Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 4} f\left( x \right) = \mathop {\lim }\limits_{x \to 4} \left( {{x^2} + x + 1} \right) = {4^2} + 4 + 1 = 21\\f\left( 4 \right) = 2a + 1\end{array}\)
Để hàm số liên tục tại x = 4 thì \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = f\left( 4 \right)\)
\(\begin{array}{*{20}{l}}{ \Leftrightarrow \;21{\rm{ }} = {\rm{ }}2a{\rm{ }} + {\rm{ }}1}\\{ \Leftrightarrow \;2a{\rm{ }} = {\rm{ }}20}\\{ \Leftrightarrow \;a{\rm{ }} = {\rm{ }}10}\end{array}\)
Vậy với a = 10 thì hàm số liên tục tại x = 4.
c) TXĐ: \(\mathbb{R}\)
Với \(x\; \in \;\left( {-{\rm{ }}\infty ;{\rm{ }}4} \right)\) có \(f\left( x \right) = {x^2} + x + 1\) liên tục với mọi x thuộc khoảng này.
Với \(x\; \in \;\left( {4;{\rm{ }} + \infty } \right)\) có \(f\left( x \right) = 2a + 1\) liên tục với mọi x thuộc khoảng này.
Do đó hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) khi hàm số \(f\left( x \right)\) liên tục tại điểm x = 4 khi a = 10.
Vậy với a = 10 hàm số liên tục trên tập xác định của nó.
Xét tính liên tục của hàm số:
a) \(f\left( x \right) = 1 - {x^2}\) tại điểm \({x_0} = 3\);
b) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + 1}&{khi\,\,x > 1}\\{ - x}&{khi\,\,x \le 1}\end{array}} \right.\) tại điểm \({x_0} = 1\).
a) \(f\left( 3 \right) = 1 - {3^2} = 1 - 9 = - 8\).
\(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \left( {1 - {x^2}} \right) = 1 - {3^2} = 1 - 9 = - 8\).
Vì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right) = - 8\) nên hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 3\).
b) \(f\left( 1 \right) = - 1\).
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 1} \right) = {1^2} + 1 = 2\).
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - x} \right) = - 1\).
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)
Vậy hàm số không liên tục tại điểm \({x_0} = 1\).
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 4}}{{x + 2}}}&{khi\,\,x \ne - 2}\\a&{khi\,\,x = - 2}\end{array}} \right.\).
Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 4}}{{x + 2}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).
Ta có: \(f\left( { - 2} \right) = a\)
\(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \left( {x - 2} \right) = - 2 - 2 = - 4\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = - 2\). Khi đó:
\(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = f\left( { - 2} \right) \Leftrightarrow a = - 4\).
Vậy với \(a = - 4\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x + a}&{{\rm{ }}x < 2}\\4&{{\rm{ }}x = 2}\\{ - 3x + b}&{{\rm{ }}\,x > 2}\end{array}} \right.\)
a) Với \(a = 0,b = 1\), xét tính liên tục của hàm số tại \(x = 2\).
b) Với giá trị nào của a, b thì hàm số liên tục tại \(x = 2\) ?
c) Với giá trị nào của a, b thì hàm số liên tục trên tập xác định?
Với a = 0, b = 1, hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x}&{{\rm{ }}x < 2}\\4&{{\rm{ }}x = 2}\\{ - 3x + 1}&{{\rm{ }}\,x > 2}\end{array}} \right.\)
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + 1} \right) = - 3.2 + 1 = - 5\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x} \right) = 2.2 = 4\\ \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\end{array}\)
Do đó không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)
Vậy hàm số không liên tục tại x = 2.
b) Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + b} \right) = - 3.2 + b = - 6 + b\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x + a} \right) = 2.2 + a = 4 + a\\f\left( 2 \right) = 4\end{array}\)
Để hàm số liên tục tại x = 2 thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right)\)
\( \Leftrightarrow - 6 + b = 4 + a = 4 \Leftrightarrow \left\{ \begin{array}{l}4 + a = 4\\ - 6 + b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 10\end{array} \right.\)
Vậy với a = 0 và b = 10 thì hàm số liên tục tại x = 2.
c) Tập xác định của hàm số là: ℝ.
Với x < 2 thì \(f\left( x \right) = 2x + a\) là hàm đa thức nên liên tục.
Với x > 2 thì \(f\left( x \right) = -3x + b\) là hàm đa thức nên liên tục.
Do đó để hàm số liên tục trên ℝ thì hàm số \(f\left( x \right)\) liên tục tại x = 2.
Vậy với a = 0 và b = 10 thỏa mãn điều kiện.
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 2x}}{x}}&{khi\,\,x \ne 0}\\a&{khi\,\,x = 0}\end{array}} \right.\).
Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).
Ta có: \(f\left( 0 \right) = a\)
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 = - 2\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\). Khi đó:
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a = - 2\).
Vậy với \(a = - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 25}}{{x - 5}}}&{khi\,\,x \ne 5}\\a&{khi\,\,x = 5}\end{array}} \right.\).
Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Trên các khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 25}}{{x - 5}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\).
Ta có: \(f\left( 5 \right) = a\)
\(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \frac{{\left( {x - 5} \right)\left( {x + 5} \right)}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \left( {x + 5} \right) = 5 + 5 = 10\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 5\). Khi đó: \(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = f\left( 5 \right) \Leftrightarrow a = 10\).
Vậy với \(a = 10\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + 2{\rm{x}} + m}&{khi\,\,x \ge 2}\\3&{khi\,\,x < 2}\end{array}} \right.\) liên tục tại \(x = 2\) khi:
A. \(m = 3\).
B. \(m = 5\).
C. \(m = - 3\).
D. \(m = - 5\).
Trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\), \(f\left( x \right)\) là hàm đa thức nên liên tục trên từng khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\).
Ta có: \(f\left( 2 \right) = {2^2} + 2.2 + m = m + 8\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} + 2{\rm{x}} + m} \right) = {2^2} + 2.2 + m = m + 8\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( 3 \right) = 3\end{array}\)
Để hàm số \(y = f\left( x \right)\) liên tục liên tục tại \(x = 2\) thì
\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow m + 8 = 3 \Leftrightarrow m = - 5\).
Vậy với \(m = - 5\) thì hàm số \(y = f\left( x \right)\) liên tục tại \(x = 2\).
Chọn D.