cho biết 2(a^2+b^2)=(a-b)^2. chứng minh rằng a và b là hai số đối nhau
cho biết 2.(a2 +b2)= (a-b)2 .chứng minh rằng a và b là hai số đối nhau
2.(a2 +b2)= (a-b)2
=>\(2a^2+2b^2=a^2-2ab+b^2\)
=>\(a^2+2ab+b^2=0\)
=>\(\left(a+b\right)^2=0\)
=>a=-b
Vậy a và b là 2 số đối nhau
Cho biết \(2\left(a^2+b^2\right)=\left(a-b\right)^2\). Chứng minh rằng a và b là hai số đối nhau.
\(2.\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Rightarrow a^2+b^2=-2ab\)
\(\Rightarrow a^2+2ab+b^2=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a=-b\)
Vậy a và b là 2 số đối nhau
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\)
\(\Leftrightarrow a=-b\)
Vậy a và b là hai số đối nhau (đpcm)
2( a2 + b2 ) = ( a - b )2
<=> 2a2 + 2b2 = a2 - 2ab + b2
<=> 2a2 + 2b2 - a2 + 2ab - b2 = 0
<=> a2 + 2ab + b2 = 0
<=> ( a + b )2 = 0
<=> a + b = 0
<=> a = -b
=> đpcm
cho biết \(2\left(a^2+b^2\right)=\left(a-b\right)^2\) . Chứng minh rằng a và b là 2 số đối nhau
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Rightarrow a^2+b^2+2ab=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow dpcm\)
Cho a, b, c là các số nguyên. Biết ab-ac+bc-c2=-1. Chứng minh rằng hai số a và b đối nhau.
Cho a,b,cthuộc Z biết rằng ab-ac+bc-c2=1.Chứng minh rằng a,b là hai số đối nhau
mk nghĩ đề bài là a,b,c thuộc N
ab-ac+bc-c^2=1
->(ab-ac)+(bc-c^2)=1
->a(b-c)+c(b-c)=1
->(b-c)(a+c)=1
mà a,b,c là các số tự nhiên
mà 1=1×1
+,b-c=1 và a+c=1
->b=1+c và a=1-c=-(c+1)=-b
->a,b là 2 số đối nhau
Cho a;b;c€Z. Biết a.b-a.c+b.c-c2=-1. Chứng minh rằng a và b là 2 số đối nhau.
a.b-a.c+b.c-c2=-1
a.b-a.c+b.c-c.c=-1
a.(b-c)+c.(b-c)=-1
(b-c).(a+c)=-1
Mà a;b;c\(\in\)Z
=>b-c=-1;a+c=1
b=-1+c;a=1-c
=>a đối b
Hoặc b-c=1;a+c=-1
b=1+c;a=-1-c
=>a đối b
=>a;b đối nhau khi a.b-a.c+b.c-c2=-1
Chúc bn học tốt
\(ab-ac+bc-c^2=-1\)\(\Leftrightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1=1.\left(-1\right)=\left(-1\right).1\)
mà \(1+\left(-1\right)=0\)\(\Rightarrow\left(a+c\right)+\left(b-c\right)=0\)
\(\Leftrightarrow a+c+b-c=0\)\(\Leftrightarrow a+b=0\)
Vậy a và b là 2 số đối nhau
Mk bổ sung thêm từ bước
=>b-c=-1 và a+c=1
=>b=-1+c ;a =1-c
=>a+b=-1+c+1-c=0+0=0
=>a và b đối nhau(Vì 2 số đối cộng với nhau bằng 0)
Hoặc b-c=1 vàa+c=-1
=>b=1+c;a=-1-c
=>a+b=1+c+-1-c=0+0=0
=>a và b đối nhau (vì 2 số đối có tổng bằng 0)
Bn sửa lại nha
Chúc bn học tốt
Cho a,b,c thuộc Z .Biết ab-ac+bc-c^2=-1
Chứng minh rằng hai số a và b đối nhau
ab-ac+bc-c2=-1
=> a.(b-c)+c.(b-c)=-1
=> (b-c).(a+c)=-1
=> (b-c).(a+c)=-1.1=1.(-1)
+) b-c=-1; a+c=1
=> (b-c)+(a+c) = b-c+a+c = a + b = -1 + 1 = 0
=> a và b đối nhau
+) b-c=1; a+c=-1
=> (b-c)+(a+c) = b-c+a+c = a + b = 1 + (-1) = 0
=> a và b đối nhau Vậy 2 số a và b đối nhau.
Cho a, b,c ∈ Z và a.b - a.c + b.c = c^2 - 1. Chứng minh rằng a và b là hai số đối nhau
Giúp gấp!!!!!!!!!!!!!!!!!!
cho a,b,c thuộc Z biết : ab - ac + bc - c^2 = -1 Chứng minh rằng 2 số a và b đối nhau
Ta có :
ab - ac + bc - c2 = -1
\(\Leftrightarrow\)a . ( b - c ) + c . ( b - c ) = -1
\(\Leftrightarrow\)( a + c ) . ( b - c ) = -1
\(\Leftrightarrow\)b - c và a + c phải khác dấu tức là b - c = - ( a + b )
\(\Leftrightarrow\)b - c = -a - c
\(\Leftrightarrow\)b = -a
Vậy a và b là hai số đối nhau
Từ a+b=c +d suy ra d = a+b-c
Vì tích ab là số liền sau của tích cd nên ab-cd = 1
\(\Leftrightarrow\)ab - c.(a+b-c)=1
\(\Leftrightarrow\)ab - ac - bc + c2 = 1
\(\Leftrightarrow\)a.(b-c)-c.(b-c)=1
\(\Leftrightarrow\)(b-c).(a-c)=1
\(\Rightarrow\)a-c=b-c (vì cùng bằng 1 hoặc -1 )
\(\Rightarrow\)a=b
mình nha