Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Tuệ Anh
Xem chi tiết
Nguyễn Hà Vi
9 tháng 5 2017 lúc 13:29

a) BE,CF là trung tuyến \(\Rightarrow AF=BF=AE=EC\)(AB=AC),                                                                                                                           Xét tam giác ABE và tam giác ACF : AF=AE(CMT) 

                                                           AB=AC(gt)  ; góc Achung    ; 

                       Vậy tam giác ABC= tam giác ACF (c-g-c) 

b)    Tam giác AEF cân tai A vì AF=AE suy ra góc AFE=góc ABC (đều cân tại A) mà ở vị trí đồng vị suy ra EF//BC (đpcm)

c) Ta có Glà giao điểm 2 đường trung tuyến suy ra G là trọng tâm suy ra AG cũng là trung tuyến 

 Mà tam giac ABC cân suy ra AG cũng là đường cao suy ra AG vuông góc với BC 

Vananh Vu
Xem chi tiết
Nguyễn Phương Ánh
Xem chi tiết
ngô văn quốc hưng
Xem chi tiết
Mai Hồng Ngọc
Xem chi tiết
Thủy Tô
2 tháng 5 2023 lúc 16:16

<Tự vẽ hình nha>

a)Xét ΔABE và ΔACF

góc AEB=góc AFC

góc BEA=góc CFA

Vậy ΔABE ∼ ΔACF(g.g)

\(\dfrac{AB}{AC}\)=\(\dfrac{AE}{AF}\)⇔AB.AF=AE.AC

\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)

b)Xét ΔAEF và ΔABC

Góc A:chung

\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)(cmt)

Vậy ΔAEF∼ΔABC (g.g)

 

 

 

 

 

Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 8:50

a: Xét ΔABE và ΔACF có

góc AEB=góc AFC

góc A chung

=>ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

=>FE/BC=AE/AB

=>FE*AB=AE*BC

thanh tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 8:27

a: Xét ΔABE và ΔACF có

góc AEB=góc AFC

góc BAE chung

=>ΔABE đồng dạng với ΔACF

b: ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

=>EF/BC=AE/AB

=>AE*BC=AB*EF

Bùi Quang Khánh
Xem chi tiết
Triệu DUY
Xem chi tiết
mình kém lắm:(
Xem chi tiết
kisibongdem
30 tháng 4 2022 lúc 13:50

a) 

Do \(\triangle ABC \) cân ( \(AB=AC\) )

\(\Rightarrow \widehat{ABC} = \widehat{ACB}\)

Mà \(BE ; CF\) lần lượt là đường phân giác của \(\widehat{ABC} ; \widehat{ACB}.\)

\(\Rightarrow \widehat{ABE} = \widehat{ACF} \)

Xét \(\triangle ABE\) và \(\triangle ACF\) ta  có :

\(AB = AC\) ( gt )

\(\widehat{ABC}\) chung 

\(\widehat{ABE} = \widehat{ACF} \) ( cmt )

\(\Rightarrow \) \(\triangle ABE\) \(=\) \(\triangle ACF\) ( g.c.g )

 

kisibongdem
30 tháng 4 2022 lúc 14:05

Do \(\triangle ABE = \triangle ACF\)

\(\Rightarrow \widehat{BAH} = \widehat{CAH} \) ( 2 góc tương ứng )

Xét \(\triangle ABD\) và \(\triangle ACD\) ta có :

\(AD\) chung  

\(AB=AC\) ( gt )

\( \widehat{BAH} = \widehat{CAH} \) ( cmt )

\(\Rightarrow \) \(\triangle ABD\) \(=\) \(\triangle ACD\)  ( c.g.c )

\(\Rightarrow BD=DC\) ( 2 cạnh tương ứng ) (1)

Mà D nằm trên BC . 

\(\Rightarrow BD+DC=BC\) (2)

Từ (1) và (2) ta được \(D\) là trung điểm của \(BC\)

Xét \(\triangle DHF\) và \(\triangle CHE\) có :

\(\widehat{FBH} = \widehat{ECH} \) ( theo câu a, )

\(\widehat{FHB} = \widehat{EHC} \) ( 2 goc đối đỉnh )

Mà \(\widehat{FBH} +\) \(\widehat{FHB}\) \(+ \widehat{BFH}\) \(= \) \(\widehat{ECH} +\) \(\widehat{EHC} + \widehat{CEH} = 180^o\)

\(\Rightarrow\) \(\widehat{BFH} = \) \(\widehat{CEH} \) (1)

Mà chúng ở vị trí đồng vị . (2)

Từ (1) và (2) \(\Rightarrow \) \(EF\) // \(BC\) 

 

    

 

 

chuche
30 tháng 4 2022 lúc 14:12

em từ từ nhé !