Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thanh Tuấn
Xem chi tiết
So Yummy
Xem chi tiết
ThuuAnhh---
22 tháng 12 2020 lúc 13:22

undefined

DanAlex
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 2021 lúc 20:01

\(A=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)

\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

\(y=4x^2+\dfrac{9}{x^2}-3\ge2\sqrt{\dfrac{36x^2}{x^2}}-3=9\)

\(y_{min}=9\) khi \(x^2=\dfrac{3}{2}\)

\(P=\dfrac{x-1}{4}+\dfrac{1}{x-1}+\dfrac{1}{4}\ge2\sqrt{\dfrac{x-1}{4\left(x-1\right)}}+\dfrac{1}{4}=\dfrac{5}{4}\)

\(P_{min}=\dfrac{5}{4}\) khi \(x=\dfrac{3}{2}\)

Đào Anh Khoa
Xem chi tiết
Đào Anh Khoa
1 tháng 1 2022 lúc 16:09

a) Điều kiện: \(x\ge0;x\ne1;x\ne\dfrac{1}{4}\)\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt[]{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right).\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{2x\sqrt{x}+x-\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}+x\sqrt{x}+x+\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{2x\sqrt{x}-\sqrt{x}+x}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\)

b)Vì \(x\ge0\) nên \(x+\sqrt{x}\ge0\) và \(x+\sqrt{x}+1>0\)

Do đó: \(E\ge0\). Dấu "=" xảy ra \(\Leftrightarrow x=0\)

c)\(E\ge\dfrac{6}{7}\Leftrightarrow\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\ge\dfrac{6}{7}\Leftrightarrow7x+7\sqrt{x}\ge6x+6\sqrt{x}+6\)

                \(\Leftrightarrow x+\sqrt{x}-6\ge0\Leftrightarrow x-2\sqrt{x}+3\sqrt{x}-6\ge0\)

                 \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ge0\)

                  \(\Leftrightarrow\sqrt{x}-2\ge0\Leftrightarrow\sqrt{x}\ge2\Leftrightarrow x\ge4\)

Thầy Cao Đô
Xem chi tiết
Nguyễn Huy Tú
8 tháng 4 2021 lúc 13:09

a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)

\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)

Vậy với x = 4 thì A = 3/4 

b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )

Khách vãng lai đã xóa
Pham Tran Quang Dung
24 tháng 4 2021 lúc 19:37
Khách vãng lai đã xóa
Phạm Viết Nam
7 tháng 5 2021 lúc 10:10

với x=4(t/m DK)

=>\(\sqrt{x}\)=2

thay\(\sqrt{x}\)=2 vào biểu thức A ta được

A=(2+1)/(2+2)

A=3/4

Khách vãng lai đã xóa
Ly Ly
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 16:23

a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy...

b)Đk: \(x\ge-1\)

Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)

\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)

Vậy...

\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)

b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\) 

Vậy \(A_{min}=-\dfrac{1}{4}\)

An Thy
5 tháng 7 2021 lúc 16:25

a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)

\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)

\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)

a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)

loann nguyễn
5 tháng 7 2021 lúc 16:42

✱ giải pt:

a.\(\sqrt{x^2-4x+4}\)\(=5\)

\(\sqrt{\left(x-2\right)^2}=5\)

\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

vậy....

b.\(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)

⇔ \(4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

⇔ \(4\sqrt{x+1}=16\)

⇔ \(\sqrt{x+1}=16\)

⇒ \(x+1=256\)

⇔ \(x=255\)

vậy.....

 

NguyenHa ThaoLinh
Xem chi tiết
Dark Killer
Xem chi tiết
phan tuấn anh
22 tháng 6 2016 lúc 10:16

ui mk nhầm chỗ cuối kết quả A=2 nhé

phan tuấn anh
22 tháng 6 2016 lúc 10:13

bài 1 

a) ĐKXĐ : bạn tự tìm nhé 

b) ta có A=\(\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)

               =\(\sqrt{\left(\sqrt{x^2-1}+1\right)^2}+\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

               =\(\left|\sqrt{x^2-1}+1\right|+\left|\sqrt{x^2-1}-1\right|\)

              =\(\sqrt{x^2-1}+1+\sqrt{x^2-1}-1\)( vì \(\left|x\right|\ge\sqrt{2}\))

              =\(2\sqrt{x^2-1}\)