cho x,y,z thỏa mãn x+y+z=6. tìm giá trị lớn nhất của A=xy+2yz+3zx
Cho các số thực x,y,z thỏa mãn: x+y+z=6.Tìm giá trị lớn nhất của A=xy+2yz+3zx
từ giả thiết ta có : z = 6 - x - y
Ta có : \(A=xy+z\left(2y+3x\right)=xy+\left(6-x-y\right)\left(2y+3x\right)\)
\(=-3x^2-2y^2-4xy+18x+12y\)
Do đó : \(3A=-9x^2-6y^2-12xy+54x+36y=-9x^2-6x\left(2y-9\right)-6y^2+36y\)
\(=-\left(3x+2y-9\right)^2-2y^2+81\le81\)
\(\Rightarrow A\le27\)
Vậy giá trị lớn nhất của A là 27 \(\Leftrightarrow\hept{\begin{cases}3x+2y-9=0\\y=0\end{cases}\Leftrightarrow x=3;y=0;z=3}\)
cho x, y, z \(\in\)R thỏa mãn x+y+z=6. tìm GTLN của biểu thức A=xy+2yz+3zx
MÌNH CẦN GẤP Ạ!!!
Cho x ,y ,z thỏa mãn : x+ y+z =0 . Chứng minh rằng : xy+2yz+3zx ≤ 0
\(xy+2yz+3zx=xy+zx+2yz+2zx=x\left(y+z\right)+2z\left(y+x\right)=x.\left(-x\right)+2z.\left(-z\right)=-x^2-2z^2\le0\)-Dấu bằng xảy ra \(\Leftrightarrow x=y=z=0\)
Cho x,y,z là các số thực thỏa mãn xy + yz + 3zx = 1 . Tìm giá trị nhỏ nhất của biểu thức P = x^2 + y^2 + z^2
Đặt \(a=\frac{9+3\sqrt{17}}{4}\) và \(b=\frac{3+\sqrt{17}}{4}\)khi đó \(a=3b\)và \(a+1=2b^2=c=\frac{13+3\sqrt{17}}{4}\)
Áp dụng BĐT AM-GM ta thu được các BĐT sau: \(x^2+b^2y^2\ge2bxy\)
\(by^2+z^2\ge2byz\)
\(a\left(z^2+x^2\right)\ge2azx\)
Cộng các vế theo các vế các BĐT thu được để có:
\(\left(a+1\right)\left(x^2+z^2\right)+2b^2y^2\ge2b\left(xy+yz\right)+2azx\)
Hay \(c\left(x^2+y^2+z^2\right)\ge2b\left(xy+yz+3zx\right)\). Từ đó ta thay các giá trị của \(xy+yz+3zx\); b và c để có được
\(P=x^2+y^2+z^2\ge\frac{\sqrt{17}-3}{2}\)
Cuối cùng, với \(x=z=\frac{1}{\sqrt[4]{17}}\)và \(y=\sqrt{\frac{13\sqrt{17}-51}{34}}\)( Thỏa mãn giả thiết ) thì \(P=\frac{\sqrt{17}-3}{2}\)
Nên ta kết luận \(\frac{\sqrt{17}-3}{2}\)là giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2\)
biết các số nguyên dương x, y, z thỏa mãn hệ phương trình :x²+xy+(y²/3)=25, (y²/3)+z²=9, z²+xz+x²=16. tính A=xy+2yz+3zx
de sai roi em oi
o phuong trinh 2 can them +yz nhe
cho 3 số thực x, y, z thỏa mãn x+y+z =4,tìm giá trị lớn nhất của biểu thức A = xy+3yz+2zx
\(A=3yz+\left(4-y-z\right)\left(y+2z\right)\)
\(A=-y^2+4y-2z^2+8z\)
\(A=-\left(y-2\right)^2-2\left(z-2\right)^2+12\le12\)
\(A_{max}=12\) khi \(\left(x;y;z\right)=\left(0;2;2\right)\)
Cho x,y ϵ Z thỏa mãn x+y=2019. Tìm giá trị lớn nhất của P=xy
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2019^2}{4}\)
Dấu = xảy ra khi \(x=y=\dfrac{2019}{2}\)
Cho ba số x,y,z thỏa mãn x+y+z=3. Tìm giá trị lớn nhất của B= xy+ yz+ xz
với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1
ai tích mình tích lại nhưng phải lên điểm mình tích gấp đôi
cho \(x,y,z\ge0\)thỏa mãn điều kiện x+y+z=a
a) tìm giá trị lớn nhất của A=xy+z+zx
b) tìm giá trị nhỏ nhất của B=x2+y2+x2
b,Ap dung bdt cauchy schwarz dang engel ta co
\(B=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}>=\frac{\left(x+y+z\right)^2}{3}=\frac{a^2}{3}\)
xay ra dau = khi x=y=z=a/3