Những câu hỏi liên quan
Itachi Uchiha
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 14:45

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

Bình luận (0)
FL.Hermit
9 tháng 8 2020 lúc 9:26

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

Bình luận (0)
 Khách vãng lai đã xóa
FL.Hermit
9 tháng 8 2020 lúc 9:45

Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

=>     \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)

=>     \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)

Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)

Có:    \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)

<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(x^2+y^2+z^2\ge xy+yz+zx\)

Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)

Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
Kim Yuri
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2020 lúc 23:47

Với các số dương x; y ta có:

\(x^5+y^5=\left(x^3+y^3\right)\left(x^2+y^2\right)-x^2y^2\left(x+y\right)\)

\(\Rightarrow x^5+y^5\ge xy\left(x+y\right).2xy-x^2y^2\left(x+y\right)=x^2y^2\left(x+y\right)\)

\(\Rightarrow P\le\frac{ab}{a^2b^2\left(a+b\right)+ab}+\frac{bc}{b^2c^2\left(b+c\right)+bc}+\frac{ca}{c^2a^2\left(c+a\right)+ca}\)

\(P\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(P\le\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(a+c\right)+abc}\)

\(P\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
Tuệ Linh Võ
Xem chi tiết
pham trung thanh
4 tháng 6 2018 lúc 16:11

Bạn CM \(a^5+b^5\ge ab\left(a^3+b^3\right)\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{a^3+b^3+abc}\)

Tiếp tục \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{c}{a+b+c}\)

Tương tự cộng lại suy ra \(VT\le1\)

Dấu = xảy ra khi a=b=c=1

Bình luận (0)
Tuệ Linh Võ
4 tháng 6 2018 lúc 17:56

Mỉnh cảm ơn nha 

Bình luận (0)
Duong Thi Minh
Xem chi tiết
lyzimi
Xem chi tiết
Thắng Nguyễn
29 tháng 1 2017 lúc 17:58

Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)\left(a^3-b^3\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\ge\left(a+b\right)^2a^2b^2\)\(\forall a,b>0\)

\(\Leftrightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Leftrightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)

Tương tự ta có: \(\frac{bc}{b^5+c^5+bc}\le\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\le\frac{b}{a+b+c}\)

Cộng theo vế ta có: \(VT\le\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
Nguyễn Thiên Kim
30 tháng 1 2017 lúc 20:19

mk có cách giải khác Lyzimi, Thắng Nguyễn và Minh Triều xem thử nha :)

\(\forall x;y>0\) ta dễ dàng chứng minh được \(x^5+y^5\ge xy\left(x^3+y^3\right)\) và \(x^3+y^3\ge xy\left(x+y\right)\)

Đẳng thức xảy ra \(\Leftrightarrow\)\(x=y\)

(cái này để chứng minh bn thử biến đổi tương đương xem sao :)

Do đó \(a^5+b^5+ab\ge ab\left(a^3+b^3+1\right)\)

\(\Rightarrow\)\(\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left(a^3+b^3+1\right)}=\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)(1)

Chứng minh tương tự \(\frac{bc}{b^5+c^5+bc}\le\frac{1}{bc\left(a+b+c\right)}\) (2) và \(\frac{ca}{c^5+a^5+ca}\le\frac{1}{ca\left(a+b+c\right)}\) (3)

Cộng (1), (2) và (3) ta có \(VT\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a+b+c}.\frac{a+b+c}{abc}=\frac{1}{abc}=1\)

Đẳng thức xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

Bình luận (0)
Rin Kagamine
3 tháng 2 2017 lúc 13:03

mình hông hiểu ???

Bình luận (0)
Leonah
Xem chi tiết
Nhok_baobinh
Xem chi tiết
pham trung thanh
7 tháng 12 2017 lúc 15:15

Chứng minh BĐT Phụ: \(a^5+b^5\ge a^4b+ab^4\)với \(a;b>0\)

\(\Rightarrow\frac{a^5+b^5}{ab\left(a+b\right)}\ge\frac{a^4b+ab^4}{ab\left(a+b\right)}=\frac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\frac{ab\left(a+b\right)\left(a^2-ab+b^2\right)}{ab\left(a+b\right)}=a^2-ab+b^2\)

Áp dụng ta có: \(VT\)(VẾ TRÁI)\(\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)                       \(\left(1\right)\)

Xét: \(\left[2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\right]-\left[3\left(ab+bc+ca\right)-2\right]\)

\(=2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+2\)

\(=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)              (Do a2+b2+c2=1)                           \(\left(2\right)\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\)   Tự chứng minh                                                               \(\left(3\right)\)

Từ (1);(2) và (3) suy ra \(VT\ge3\left(ab+bc+ca\right)-2\)

Vậy \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)

Bình luận (0)
Trần Đức Thắng
Xem chi tiết
Nguyễn Thị Huỳnh Như
26 tháng 12 2015 lúc 21:59

Ta có a+ b5 \(\ge\) a3b+ a2b= a2b(a+b)

\(\Leftrightarrow\)a+ b+ ab \(\ge\) a2b2(a+b) + ab= ab[ab(a+b)+abc] = ab[ab(a+b+c)] = ab*\(\frac{abc\left(a+b+c\right)}{c}\) =  ab* \(\frac{a+b+c}{c}\)  (vì abc=1)

\(\Leftrightarrow\) \(\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\cdot\frac{a+b+c}{c}}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)  (1)

Tương tự, ta có \(\frac{bc}{b^5+c^5+bc}\le\frac{a}{a+b+c}\)(2)

\(\frac{ca}{a^5+c^5+ca}\le\frac{b}{a+b+c}\)(3)

Ta cộng từng vế (1), (2), (3), ta được

\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{a^5+c^5+ca}\le\frac{a+b+c}{a+b+c}=1\)

Vây ta được điều phài chứng minh

 

 

Bình luận (0)
Lyzimi
Xem chi tiết
Minh Triều
23 tháng 1 2017 lúc 22:19

\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)

=\(\frac{1}{abc}.\left(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\right)\)

=\(\frac{1}{a^5c+b^5c+abc}+\frac{1}{b^5a+c^5a+abc}+\frac{1}{c^5b+a^5b+abc}\)

\(\le\)\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\)

Ta có : a3+b3=(a+b)(a2-ab+b2)\(\ge\)ab(a+b) (cosi)

Tương tự ta được:

b3+c3\(\ge bc\left(b+c\right)\)

c3+a3\(\ge ca\left(c+a\right)\)

Như vậy \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)

\(\le\)\(\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\)

=\(\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

=\(\frac{1}{a+b+c}.\left(\frac{a+b+c}{ab+bc+ca}\right)=\frac{1}{ab+bc+ca}\le1\)

Bình luận (0)
ngonhuminh
24 tháng 1 2017 lúc 7:37

​mình tò mò muốn biết BĐT trên đẳng thức khi nào nhỉ

Bình luận (0)
ngonhuminh
24 tháng 1 2017 lúc 9:30

Không phải chới đâu BĐT cuối của bạn không bao giờ =1 được

\(\frac{1}{ab+bc+ac}\le\frac{1}{3}\) Đẳng thức khi a=b=c=1

p/s: đoạn trước bạn viết loạn lên chưa cần xem

Bình luận (0)