Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2018 lúc 15:19

Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.

+ Nếu n2 chia cho 5 dư 1 thì   n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .

Nên n2+4 không là số nguyên tố

+ Nếu n2 chia cho 5 dư 4 thì  n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .

Nên n2+16 không là số nguyên tố.

Vậy n2  5 hay n  ⋮ 5

Ngân Nguyễn
Xem chi tiết
Trung Nguyen
Xem chi tiết
ZerosOfGamer
2 tháng 4 2018 lúc 22:42

  zdvdz

tiểu an Phạm
Xem chi tiết
tiểu an Phạm
8 tháng 5 2018 lúc 20:38

bn hay thật 

không có tên
8 tháng 5 2018 lúc 20:40

Đây toán 6 nha bạn

với n =2   =>  \(n^2+4=8 loại\)

với n =3   => \(n^2+16= 24 loại\)

với n =4  =>  \(n^2+4=20 loại\)

vói n =5  =>  ( các bn tự thử) THõa mãn

Với n>5 => n có dạng 5k+1,5k+2,5k+3,5K+4

Sau đó tự thử nha


 

shitbo
6 tháng 5 2020 lúc 18:07

Ta có tính chất số chính phương khi chia cho 5 có số dư là 0;1;4

Nếu n2 chia 5 dư 1 thì n2 = 5k + 1 => n2 + 4 = 5k + 5 chia hết cho 5

=> n2 + 4 không là SNT

Nếu n2 chia 5 dư 4 thì n2 = 5k + 4 => n2 + 16 = 5k + 20 chia hết cho 5

=> n2 + 16 không là SNT

Vậy n2 chia hết cho 5

Vậy ta có đpcm

Khách vãng lai đã xóa
Phạm Đức Nghĩa( E)
Xem chi tiết
Nguyễn Anh Quân
7 tháng 3 2018 lúc 21:53

+, Nếu n chia 5 dư +-1 thì :

n^2 chia 5 dư 1 => n^2+4 chia hết cho 5

Mà n^2+4 > 5 => n^2+4 là hợp số

+, Nếu n chia 5 dư +-3 thì :

n^2 chia 5 dư 4 => n^2+16 chia hết cho 5

Mà n^2+16 > 5 => n^2+16 lừ hợp số 

=> để n^2+4 và n^2+16 đều là số nguyên tố thì n chia hết cho 5

Tk mk nha

Nguyễn Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 10 2023 lúc 8:46

loading...  loading...  loading...  loading...  loading...  loading...  

Ngô Hoàng Việt
Xem chi tiết
Nguyễn Thị Ngọc
Xem chi tiết
đặng minh hiếu
Xem chi tiết
Công chúa sinh đôi
9 tháng 8 2016 lúc 10:26

khó quá

Anh Trần
9 tháng 8 2016 lúc 10:26

Hiếu cũng đi hỏi à?

Nacute
14 tháng 1 2022 lúc 21:51

Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4. + Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * . Nên n2+4 không là số nguyên tố + Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * . Nên n2+16 không là số nguyên tố. Vậy n2 ⋮ 5 hay n ⋮ 5