a = 5/3.7 + 5/ 7.11+ 5 / 11 .15 + .....+ 5/1.85
a = 5/3.7 + 5/ 7.11+ 5 / 11 .15 + .....+ 5/1.85
=5/4(4/3*7+4/7*11+...+4/81*85)
=5/4(1/3-1/7+1/7-1/11+...+1/81-1/85)
=5/4*82/255=41/102
Tính tổng A= 5/3.7 + 5/7.11 + 5/11.15+...+5/2019.2023
Các bạn cho mình hỏi mình viết thành 5/4 x (4/3.7 + 4/7.11 + 4/11.15+...+ 4/2019.2023 ) được ko ạ?
Viết vậy đúng đó em
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . [4/(3.7) + 4/(7.11) + 4/(11.15) + ... + 4/(2019.2023)]
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
\(A=\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{81.85}+\frac{5}{85.89}\)
\(A=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+\frac{5}{11\cdot15}+...+\frac{5}{81\cdot85}+\frac{5}{85\cdot89}\\ A=\frac{5}{4}\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{81\cdot85}+\frac{4}{85\cdot89}\right)\\ A=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{81}-\frac{1}{85}+\frac{1}{85}-\frac{1}{89}\right)\\ A=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{89}\right)\\ A=\frac{5}{4}\left(\frac{89}{267}-\frac{3}{267}\right)\\ A=\frac{5}{4}\cdot\frac{86}{267}=\frac{215}{534}\)
tính tổng sau : \(K=\dfrac{5}{3.7}+\dfrac{5}{7.11}+\dfrac{5}{11.15}+...+\dfrac{5}{81.85}+\dfrac{5}{85.89}\)
\(K=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{85}-\dfrac{1}{89}\right)\)
\(=\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{89}\right)=\dfrac{5}{4}\cdot\dfrac{86}{267}=\dfrac{215}{534}\)
CMR A=5/3.7+5/7.11+...+5/(4n-1).(4n+3)=5n/4n+3
giải giúp với đang cần gấp
\(A=\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right).\left(4n+3\right)}\)
\(\frac{4}{5}.A=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right).\left(4n+3\right)}\)
\(\frac{4}{5}.A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\)
\(\frac{4}{5}.A=\frac{1}{3}-\frac{1}{4n+3}\)
\(\frac{4}{5}.A=\frac{4n+3}{12n+9}-\frac{3}{12n+9}\)
\(\frac{4}{5}.A=\frac{4n}{12n+9}\)
\(A=\frac{4n}{12n+9}:\frac{4}{5}\)
\(A=\frac{4n}{12n+9}.\frac{5}{4}\)
\(A=\frac{5n}{12n+9}\)
Đề bài sai nha bn
Ủng hộ mk nha ^_^
Tính tổng A=\(\dfrac{5}{3.7}+\dfrac{5}{7.11}+\dfrac{5}{11.15}+...+\dfrac{5}{2019.2023}\)
các bạn làm đầy đủ các bước đừng làm tắt giúp mình nhé.Mình cảm ơn ạ!
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
Lời giải:
$A=5(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{2019.2023})$
$4A=5(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{2019.2023})$
$=5(\frac{7-3}{3.7}+\frac{11-7}{7.11}+\frac{15-11}{11.15}+...+\frac{2023-2019}{2019.2023})$
$=5(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{2019}-\frac{1}{2023})$
$=5(\frac{1}{3}-\frac{1}{2023})=\frac{2020}{6069}$
$\Rightarrow A=\frac{2020}{6069}:4=\frac{505}{6069}$
A = \(\dfrac{5}{3.7}\) + \(\dfrac{5}{7.11}\) + \(\dfrac{5}{11.15}\)+...+ \(\dfrac{5}{2019.2023}\)
A = 5.(\(\dfrac{1}{3.7}\) + \(\dfrac{1}{7.11}\) + \(\dfrac{1}{11.15}\) + ... + \(\dfrac{1}{2019.2023}\))
A = \(\dfrac{5}{4}\).( \(\dfrac{4}{3.7}\) + \(\dfrac{4}{7.11}\) + \(\dfrac{4}{11.15}\) + ... + \(\dfrac{4}{2019.2023}\))
A = \(\dfrac{5}{4}\).( \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) +\(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{2019}\) - \(\dfrac{1}{2023}\))
A = \(\dfrac{5}{4}\). ( \(\dfrac{1}{3}\) - \(\dfrac{1}{2023}\))
A = \(\dfrac{5}{4}\) . \(\dfrac{2020}{6069}\)
A = \(\dfrac{2525}{6069}\)
5/3.7+5/7.11+...+5/(4n-1).(4n+3)=5/4n+3
nếu lm sai thì thôi na
đặt vế trái lak A
4A=5(5/3.7+5/7.11+.....+5/(4n-1)(4n+3)
4A=(1/3-1/4n+3)
4A=4n+3-3/3(4n+3)
4A=4/12n+9
A=5/4n+3
\(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right).\left(4n+3\right)}=\frac{5}{4n+3}\)
\(\Leftrightarrow\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)=\frac{5}{4n+3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{4n+3}=\frac{5}{4n+3}\cdot\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{4n+3}=\frac{5\cdot4}{5\left(4n+3\right)}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{4n+3}=\frac{4}{4n+3}\)
\(\Leftrightarrow\frac{1}{4n+3}=\frac{1}{3}-\frac{4}{4n+3}\)
\(\Leftrightarrow\frac{1}{4n+3}=\frac{4n+3-12}{3\left(4n+3\right)}\)
\(\Leftrightarrow\frac{1}{4n+3}=\frac{4n-9}{12n+9}\)
\(\Leftrightarrow\frac{3}{12n+9}=\frac{4n-9}{12n+9}\)
\(\Leftrightarrow4n-9=3\)
\(\Leftrightarrow4n=12\Leftrightarrow n=3\)
Vậy n = 3
Chứng minh \(\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}=\frac{5n}{4n+3}\)
chứng minh rằng với mọi số tự nhiên n khác 0 ta dều có: 5/3.7+5/7.11+5/11.15+...+5/(4n-1).(4n+3)=5n?3.(4n+3)