Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jin
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 2 2022 lúc 23:26

a: ΔABC không vuông vì \(BC^2< >AB^2+AC^2;AB^2< >AC^2+BC^2;AC^2< >AB^2+BC^2\)

an mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 19:25

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

Minh Phương
9 tháng 5 2023 lúc 19:39

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

Công Chúa Bloom
Xem chi tiết
Nguyễn Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 19:32

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

my name is crazy
Xem chi tiết
Mợt mỏi
1 tháng 2 2018 lúc 8:02

a. 

Xét tam giác ABC :

10=100

8 +  62 = 100

=> 82 + 62 = 102

Suy ra: tam giác ABC là tam giác vuông

Vì: ( Áp dụng đ/l Py-Ta-Go đảo)

b. 

Còn câu b, sao cậu lại bảo tính AC thế, phải là HC chứ!!!!!

Hoàng Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 12 2020 lúc 11:52

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=BH^2+CH^2\)

\(\Leftrightarrow AC^2=5^2+12^2=169\)

hay AC=13(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{5}=28.8\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=28,8+5=33,8(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=33.8^2-13^2=973.44\)

hay \(AB=31.2cm\)

Vậy: AC=13cm; AB=31,2cm; BC=33,8cm; BH=28,8cm

Hoàng Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 12 2020 lúc 11:48

Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được: 

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)

hay HB=18(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=18+32=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)

hay AC=40cm

Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm

Eren Yeager
Xem chi tiết
44.Trần Phương Thuỳ
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 13:06

a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)

=>\(BC^2=4^2+7,5^2=72,25\)

=>\(BC=\sqrt{72,25}=8,5\)

Xét ΔABC vuông tại A có \(cotB=\dfrac{BA}{AC}\)

=>\(cotB=\dfrac{4}{7,5}=\dfrac{8}{15}\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

Xét ΔABH vuông tại H có \(cotB=\dfrac{BH}{AH}\)

=>\(\dfrac{BH}{AH}=\dfrac{8}{15}\)

=>\(BH=\dfrac{8}{15}\cdot AH\)

\(AB^2=BH\cdot BC=\dfrac{8}{15}\cdot AH\cdot BC\)