Cho tam giác ABC có A=90 độ,góc ABC=60 độ,BE là phân giác của góc ABC trên tia đối cuẩE lấy D sao cho AD=AE a.chứng minh:tam giác ABD=tam giác ABE và tam giác BDE đều b)BE=BC c)BD vuông góc BC
cho mình hỏi:Cho tam giác ABC vuông tại A trên cạnh AC lấy E sao cho AE=1/3 AC.Trên tia đối của tia AE lấy D sao cho AE =AD. BT ED=EC. a.Cm tam giác ABD= tam giác ABE VÀ BDE là tam giác đều.
b.CM BE là p/g của góc ABC.
c.BD vuông góc với BC d.KẺ EK vuông góc với BC tại K.Cm KB=KC
MN ơi cái phần ED=EC chuyenr cho mình EB=EC nha cảm ơn
bạn bấm vào dấu ... dưới bài viết, nhấp vào cập nhật rồi chỉnh sửa lại nhé
Lưu ý các bạn khi hỏi nhé, bên dưới bài viết sẽ có dấu ... nhập vào đó là xóa và cập nhật nếu thấy bài viết ko hay thì xóa, nếu thấy bài viết sai thì cập nhật chỉnh sửa tránh tình trạng sai đề và bị báo cáo nhé!☺
Cho tgiac abc vuông tại a , góc b =60 độ ,be là phân giác của tgiac BAC trên tia đối của AE lấy D sao cho AD =AE a) cm tguac ABD=tgiac BDE đều B) cm BE=EC c)cm BD vuông góc BC
Câu a tam giác BDE = 2 lần tam giác ABD rồi, không = nhau bạn xem lại đề: )
b
Có \(\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o=\widehat{EBC}\)
=> Tam giác BEC cân tại E
=> BE = EC
c
Có \(\widehat{DBC}=\widehat{DBE}+\widehat{EBC}=60^o+30^o=90^o\Rightarrow DB\perp BC\)
Bài 1:cho tam giác ABC có AB<AC , AD là tia phân giác. trên AC lấy điểm E sao cho AE=AB.
cm a, tam giác ABD=tam giác AED.
b,trên tia AB lấy điểm F sao cho AF=AC.cm góc FBD= góc CED.
c, AD vuông góc với CF
d, DF=DC
e,BE song song với CF
f,3 điểm F,D,E thẳng hàng
Bài 2: cho tam giác ABC có góc A = 90 độ BD là phân giác của góc B( D thuộc AC. vẽ DE vuông góc với BC. gọi E là giao điểm của AB và AE.
a, cm tam giác ABD= tam giác EBD.
b, cm BD vuông góc với AE tại trung điểm AE
c, cm tam giác DCF cân
d, khi tam giác ABC có góc B=60 độ, BC=12 cm . tính DC
giúp mk nha cảm ơn các bn
Cho tam giác ABC có góc A =90 độ , BD là tia phân giác của góc B( D thuộc AC ) . Trên cạnh BC lấy điểm E sao cho BA=BE .
a) cm : tam giác ABD = tam giác EBD
b) trên tia đối của DE lấy F sao cho DC=DF . Cm AF=CE
c) Tia BD cắt FC tại H .Cm FC//AE
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
Xét ΔDAF và ΔDEC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DF=DC
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>\(\widehat{DAF}=\widehat{DEC}\)
mà \(\widehat{DEC}=90^0\)
nên \(\widehat{DAF}=90^0\)
Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)
=>\(\widehat{BAF}=90^0+90^0=180^0\)
=>B,A,F thẳng hàng
Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )
a,chứng minh rằng IA=IB
b, Tính độ dài IC
c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK
Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE
a, chứng minh rằng BE=CD
b, chứng minh rằng góc ABE bằng góc ACD
c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:
a, AC=AK và AE vuông góc CK
b,KB=KA
c, EB > AC
d, ba đường AC,BD,KE cùng đi qua 1 điểm
Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:
a, tam giác ABE=tam giác ADC
b,góc BMC=120°
Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh
a,AK=KB
b, AD=BC
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Cho tam giác ABC có góc BAC = 90 độ ( AB < AC ) Tia phân giác góc B cắt AC tại D.Trên cạnh BC lấy E sao cho BE = AB
a) CM : tam giác ABD = tam giác EBD
b) CM : BD vuông góc với AE
c) Trên tia đối của AB lấy K sao cho BK = BC CM : K, D, E thẳng hàng
cho tam giác abc có góc a = 90 độ . tia phân giác bd của góc b ( d thuộc ac ) . trên bc lấy điểm e sao cho be = ba
a, so sánh ad và de
b, chứng minh góc edc = abc
c, chứng minh ae vuông góc với bd
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
Suy ra: DA=DE(hai cạnh tương ứng) và \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
hay DE⊥BC
Ta có: DA=DE(cmt)
mà DE<DC(ΔDEC vuông tại E có DC là cạnh huyền)
nên DA<DC
b) Ta có: ΔBAC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(1)
Ta có: ΔEDC vuông tại E(cmt)
nên \(\widehat{EDC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(2)
Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{EDC}\)(đpcm)
c) Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: DA=DE(cmt)
nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra BD là đường trung trực của AE
hay BD\(\perp\)AE(đpcm)
Cho tam giác ABC có góc BAC = 90 độ ( AB < AC ) Tia phân giác góc B cắt AC tại D. Trên cạnh BC lấy E sao cho BE = AB
a) CM : tam giác ABD = tam giác EBD
b) CM : BD vuông góc với AE
c) Trên tia đối của AB lấy K sao cho BK = BC CM : K, D, E thẳng hàng