Chứng minh rằng nếu 1/a+1/b+1/c=1/(a+b+c) thì
1/(a^n)+ 1/(b^n)+ 1/(c^n)= 1/(a^n+b^n+c^n)
1) Cho a+b+c =0 . Chứng minh rằng M=N=P
M=a(a+b)(a+c) N=b(b+c)(b+a) P=c(c+a)(c+b)
2) Cho M= (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x2 . Biết x=1/2a +1/2b+1/2c. Tính M theo a,b,c
3) Cho dãy số 1,3,6,10,15,...,n(n+1)/2 ,...Chứng minh rằng tổng 2 số liên tiếp của dãy bao giờ cũng là số chính phương
4) a Chứng minh rằng với mọi a,b,c luôn có (a+b+c)(ab+bc+ca)- abc =(a+b)(b+c)(c+a)
b áp dụng chứng minh rằng nếu 1/a+1/b+1/c = 1/a+b+c thì 1/a2n+1+1/b2n+1+1/c2n+1= 1/a2n+1+b2n+1+c2n+1 với mọi n thuộc N
Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\frac{\left(n-1\right)n}{2};\frac{n\left(n+1\right)}{2}\)
\(\frac{\left(n-1\right)n}{2}+\frac{n\left(n+1\right)}{2}\)
\(=\frac{\left(n-1\right)n+n\left(n+1\right)}{2}\)
\(=\frac{n\left(n-1+n+1\right)}{2}\)
\(=\frac{n\times2n}{2}\)
\(=n^2\)
\(\Rightarrow\)Tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương
A, cho abc = 1 và a+b+c = 1/a +1/b +1/c. Chứng minh tồn tại một trong 3 số a,b,c bằng 1
B, chứng minh rằng nếu a + b + c = n và 1/a + 1/b + 1/c = 1/n thì tồn tại một trong ba số bằng n
C, chứng minh rằng nếu 3 số a,b,c khác 0 thì thỏa mãn đẳng thức
a2 -- b2 / ab + b2 -- c2 /bc + c2 -- a2/ca =0
thì tồn tại hai số bằng nhau
Cho các số nguyên a,b,c sao cho \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\)
a) Chứng minh rằng a + b không thể là số nguyên tố
b) Chứng minh rằng nếu c > 1 thì a + c và b + c không thể đồng thời là số nguyên tố
a) Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\)
\(\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{1}{c}\)
\(\Leftrightarrow ab=c\left(a+b\right)\)
Ta có : ab \(⋮\) ( a + b )
Nếu a + b là số nguyên tố thì a \(⋮\left(a+b\right)\) hoặc b \(⋮\) ( a + b )
\(\Rightarrow\) a > a + b hoặc b > a + b ( vì a , b \(\in\) N* ) ( Điều này là vô lí )
Như vậy a + b không thể là số nguyên tố
b) Ta có : (a + c ) ( b + c ) = ab + ac + bc + c2 = ab + ( a + b ) c + c2
= 2( a + b )c + c2 = c ( 2a + 2b + c )
\(\Rightarrow\left(a+c\right)\left(b+c\right)⋮c\) ( 1 )
Nếu a + c và b + c đồng thời là số nguyên tố
Mà a + c > c , b + c > c . Do đó : ( a + c ) ( b + c ) \(⋮̸\) c ( 2 )
( 1 ) và ( 2 ) mâu thuẫn với nhau
Như vậy a + c và b + c không đồng thời là số nguyên tố
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
Chứng minh rằng với mọi n lẻ thì:\(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{-\left(a+b+c\right).c}\)
TH1:a+b=0
=> a=-b
\(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{\left(-b\right)^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}\)(vì n lẻ nên (-b)n âm)
\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(-b\right)^n+b^n+c^n}=\frac{1}{c^n}\)
TH2: ab=-(a+b+c)
=> ab=-ac-bc-c2 => ab+ac=-bc-c2=> a.(b+c)=-b.(b+c)
\(\Rightarrow\orbr{\begin{cases}a=-b\\b=-c\end{cases}}\)c/m tương tự trường hợp 1 :))
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
Chứng minh rằng: \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)với n lẻ.
Cho 1/a + 1/b + 1/c = 1/(a+b+c). Chứng minh 1/a^n + 1/b^n + 1/c^n = 1(a^n+b^n+c^n).
cho tam giac ABC can tai A trung tuyen AM goi D la diem doi xung cua A qua M va K la trung diem cua MC E la diem doi xung cua Dqua K
a) chung minh tu giac ABCD la hinh thoi
b)chung minh tu giac AMCE la hinh chu nhat
c)AM va BE cat nhau tai I chung minh I la trung diem cua BE
d)chung minh AK,CI,EM dong quy
Cho a + 1/b = b + 1/c = c + 1/a.
Chứng minh rằng với mọi số tự nhiên n ta có:
an + 1/bn = bn + 1/cn = cn + 1/an
Cho 1/a + 1/b + 1/c = 1/(a+b+c). chứng minh 1/a^n + 1/b^n + 1/c^n = 1(a^n+b^n+c^n). Mọi người giúp mình với ạ
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\\ \Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\\ \Leftrightarrow\left(ab+bc+ca\right)\left(a+b\right)+c^2\left(a+b\right)=0\\ \Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Suy ra:
Trong 3 số a,b,c có 2 số đối nhau. Không mất tính tổng quát, giả sử a=-b
Thay vào ta dễ thấy:
\(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\left(=\dfrac{1}{c^n}\right)\) (ĐPCM)
Cho a,b,c là các số thực dương và \(n\in N\)*. Chứng minh rằng: \(\frac{a^{n+1}}{b+c}+\frac{b^{n+1}}{c+a}+\frac{c^{n+1}}{a+b}\ge\left(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\right).\sqrt[n]{\frac{a^n+b^n+c^n}{3}}\)