b=x(1-x)^2)/1+x^2 / [(1-x^2/1-x + x)(1+x^2/1+x - x)] a) rút ngọn b. b) cmb>0 với mọi x>0
1/ -chứng minh rằng: x^2 -6x+10>0 với mọi x
- CMR: x^2 -2xy +y^2 +1 >0 với mọi x và y
2/ tìm giá trị nhỏ nhất của biểu thức M = x^2 -6x+12
3/Tìm x biết:
a/ ( x+3)^2 + (x-2)(x+2) - 2(x-1)^2=7
b) x^2+x=0
c) x^3 - 1/4 x=0
4/ Rút gọn biểu thức:
a) ( x+10)^2 - ( x^2 +2x)
b) ( x+2)(x-2) + (x-1)(x^2 + x+1) - x(x^2 +x)
\(A=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy A > 0 với mọi x.
\(B=x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)
Vậy B > 0 với mọi x, y.
\(M=x^2-6x+12\)
\(=x^2-6x+9+3\)
\(=\left(x-3\right)^2+3\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3\ge3\)
\(MinB=3\Leftrightarrow x=3\)
\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)
\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)
\(2x^2+6x+5-2x^2+4x-2=7\)
\(10x=7+3\)
\(10x=10\)
\(x=1\)
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
\(x^3-\frac{1}{4}x=0\)
\(x\left(x^2-\frac{1}{4}\right)=0\)
\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
\(\left(x+10\right)^2-\left(x^2+2x\right)\)
\(=x^2+20x+100-x^2-2x\)
\(=18x+100\)
\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)
\(=x^2-4+x^3-1-x^3-x^2\)
\(=-5\)
1/ -chứng minh rằng: x^2 -6x+10>0 với mọi x
- CMR: x^2 -2xy +y^2 +1 >0 với mọi x và y
2/ tìm giá trị nhỏ nhất của biểu thức M = x^2 -6x+12
3/Tìm x biết:
a/ ( x+3)^2 + (x-2)(x+2) - 2(x-1)^2=7
b) x^2+x=0
c) x^3 - 1/4 x=0
4/ Rút gọn biểu thức:
a) ( x+10)^2 - ( x^2 +2x)
b) ( x+2)(x-2) + (x-1)(x^2 + x+1) - x(x^2 +x)
bài 1 áp dụng hdt là ra
bài 2 cũng z, nó tòi ra 1 số thì gtnn = cái số đó
bài 3
câu a phá hết ra
câu b nhóm hạng tử
câu a trương tự, trong ngoặc sẽ tạo ra 1 hđt
bài 4 câu a phá hết
câu b hằng đẳng thức
Bài 1: Chứng minh
a. A = 2x ^ 2 + 2x + 1 > 0 với mọi x
b. B = 4 + x ^ 2 + x > 0 với mọi x
Bài 2: Chứng minh
a. A = - x ^ 2 + 3x - 1 < 0 với mọi x
b. B = - 2x ^ 2 - 3x - 3 < 0 với mọi x
Bài 1:
\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)
2:
a: =-(x^2-3x+1)
=-(x^2-3x+9/4-5/4)
=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn
b: =-2(x^2+3/2x+3/2)
=-2(x^2+2*x*3/4+9/16+15/16)
=-2(x+3/4)^2-15/8<0 với mọi x
Bài 1:
\(B=4+x^2+x=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\\ Vậy:B>0\forall x\in R\)
BÀI 1 RÚT GỌN CÁC BIỂU THỨC SAU
a)(3x-2)(9x²+6x+4)-3(9x³-2)
b)(x²+4)(x+2)(x-2)-(x²+3)(x²-3)
c)(x+1)³-(x-1)(x²+x+1)-3x(x+1)
BÀI 2 CMR
a)-4x²-4x-2<0 với mọi x
Em ơi mình đăng bài sang bên môn toán nha
BÀI 1 RÚT GỌN CÁC BIỂU THỨC SAU
a)(3x-2)(9x²+6x+4)-3(9x³-2)
b)(x²+4)(x+2)(x-2)-(x²+3)(x²-3)
c)(x+1)³-(x-1)(x²+x+1)-3x(x+1)
BÀI 2 CMR
a)-4x²-4x-2<0 với mọi x
1.Chứng minh rằng:
a) A= -x^2+2x-2<0 với mọi x
b) tìm giá trị lớn nhất của A
2. Rút gọn và tính giá trị sau tại x=-0,01
M=(x^2-x+1)(x+1)-(x-1)(x^2+x+1)+x
\(B=\left(\frac{2x+1}{x-1}+\frac{8}{^{x^2-1}}-\frac{x-1}{x+1}\right).\frac{x^2-1}{5}\)
rút gọn B và chứng tỏ B>0 với mọi x khác +-1
cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)-\(\dfrac{2}{\sqrt{x}-1}\)-\(\dfrac{2}{x-1}\)( với x> hoặc bằng 0, x khác 1) và B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}}\) ( với x >0)
a) Rút gòn a ( ko cần làm vì mk làm rùi)
b) Tính giá trị của B khi \(^{4x^2+x-5=0}\)
c) Tìm m để có giá trị x thỏa mãn 2A+mB=0
Giúp mk b với c với
b) Ta có: \(4x^2+x-5=0\)
\(\Leftrightarrow4x^2-4x+5x-5=0\)
\(\Leftrightarrow4x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{5}{4}\left(loại\right)\end{matrix}\right.\)
Thay x=1 vào biểu thức \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}\), ta được:
\(B=\dfrac{\sqrt{1}-1}{\sqrt{1}}=0\)
Vậy: Khi \(4x^2+x-5=0\) thì B=0
1. Cho B=(2+x/2-x -2-x/2+x +4x/4-x^2) : x-3/2x-x^2
a) Rút gọn B
b) Tìm gtri của B khi x=1/2 ; x=2
c) Tìm x để A>0 ; A≤0
d)TÌm x để A<1
2. CHo C= 1/x+1 - ( x^3-x/x^2+1)[ 1 / (x+1)^2 - 1 / x^2-1 ]
a)Rút gọn C
b)Tìm x khi C=1
c)Tìm gtri của C khi x=2
d)Tìm x để C>0; C<0
Cần trước sáng ,mai