Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Minh Anh
Xem chi tiết
Monkey D. Luffy
13 tháng 11 2021 lúc 9:35

\(a,=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{19}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\\ b,=-\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{5}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}< 0\)

Khánh Quỳnh Lê
14 tháng 11 2021 lúc 8:04

a,=(x2+3x+94)+194=(x+32)2+194≥194>0b,=−(x2−5x+254)−74=−(x−52)2−74≤−74<0

dũng nguyễn đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 14:16

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:04

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

dũng nguyễn đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:03

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

Lê Đăng Hải Phong
Xem chi tiết
Lấp La Lấp Lánh
21 tháng 9 2021 lúc 20:58

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\forall x\)

nglan
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2023 lúc 21:30

a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)

b: \(4y^2+2y+1\)

\(=4\left(y^2+\dfrac{1}{2}y+\dfrac{1}{4}\right)\)

\(=4\left(y^2+2\cdot y\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{3}{16}\right)\)

\(=4\left(y+\dfrac{1}{4}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall y\)

c: \(-2x^2+6x-10\)

\(=-2\left(x^2-3x+5\right)\)

\(=-2\left(x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)

\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{11}{2}< =-\dfrac{11}{2}< 0\forall x\)

『Kuroba ム Tsuki Ryoo...
8 tháng 10 2023 lúc 21:36

`#3107.101107`

a)

`x^2 + x + 1`

`= (x^2 + 2*x*1/2 + 1/4) + 3/4`

`= (x + 1/2)^2 + 3/4`

Vì `(x + 1/2)^2 \ge 0` `AA` `x`

`=> (x + 1/2)^2 + 3/4 \ge 3/4` `AA` `x`

Vậy, `x^2 + x + 1 > 0` `AA` `x`

b)

`4y^2 + 2y + 1`

`= [(2y)^2 + 2*2y*1/2 + 1/4] + 3/4`

`= (2y + 1/2)^2 + 3/4`

Vì `(2y + 1/2)^2 \ge 0` `AA` `y`

`=> (2y + 1/2)^2 + 3/4 \ge 3/4` `AA` `y`

Vậy, `4y^2 + 2y + 1 > 0` `AA` `y`

c)

`-2x^2 + 6x - 10`

`= -(2x^2 - 6x + 10)`

`= -2(x^2 - 3x + 5)`

`= -2[ (x^2 - 2*x*3/2 + 9/4) + 11/4]`

`= -2[ (x - 3/2)^2 + 11/4]`

`= -2(x - 3/2)^2 - 11/2`

Vì `-2(x - 3/2)^2 \le 0` `AA` `x`

`=> -2(x - 3/2)^2 - 11/2 \le 11/2` `AA` `x`

Vậy, `-2x^2 + 6x - 10 < 0` `AA `x.`

Đỗ Việt Long
Xem chi tiết
le thai
22 tháng 10 2021 lúc 20:24

a) x2 – x + 1 

=(x2 – x + 1/4 )+3/4

=(x-1/2)2+3/4

ta có (x-1/2)2>=0

(x-1/2)2​+3/4>=​+3/4>0

vậy (x-1/2)2​+3/4>0 với mọi số thực x

b)  -x2+2x -4

= -x2+2x -1-3

=-(x2-2x +1)-3

=-(x-2)2​-3

ta có (x-2)2>=0

=>-(x-2)2=<0

=>-(x-2)2​-3=<​-3<0

vậy -(x-2)2​-3<0 với mọi số thực x

 

 

Cíuuuuuuuuuu
Xem chi tiết
Yeutoanhoc
7 tháng 6 2021 lúc 10:21

`a)16x^2-24x+9=25`

`<=>(4x-3)^2=25`

`+)4x-3=5`

`<=>4x=8<=>x=2`

`+)4x-3=-5`

`<=>4x=-2`

`<=>x=-1/2`

`b)x^2+10x+9=0`

`<=>x^2+x+9x+9=0`

`<=>x(x+1)+9(x+1)=0`

`<=>(x+1)(x+9)=0`

`<=>` \(\left[ \begin{array}{l}x=-9\\x=-1\end{array} \right.\) 

`c)x^2-4x-12=0`

`<=>x^2+2x-6x-12=0`

`<=>x(x+2)-6(x+2)=0`

`<=>(x+2)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\) 

Yeutoanhoc
7 tháng 6 2021 lúc 10:23

`d)x^2-5x-6=0`

`<=>x^2+x-6x-6=0`

`<=>x(x+1)-6(x+1)=0`

`<=>(x+1)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\) 

`e)4x^2-3x-1=0`

`<=>4x^2-4x+x-1=0`

`<=>4x(x-1)+(x-1)=0`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac14\end{array} \right.\) 

`f)x^4+4x^2-5=0`

`<=>x^4-x^2+5x^2-5=0`

`<=>x^2(x^2-1)+5(x^2-1)=0`

`<=>(x^2-1)(x^2+5)=0`

Vì `x^2+5>=5>0`

`=>x^2-1=0<=>x^2=1`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\) 

Thanhthanh
Xem chi tiết
Phạm Lan Hương
30 tháng 1 2021 lúc 18:55

undefined

iu
Xem chi tiết
KAl(SO4)2·12H2O
25 tháng 3 2020 lúc 9:10

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

Khách vãng lai đã xóa
nhung đỗ
13 tháng 12 2020 lúc 10:45

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha