k=(1/2023-1)(1/2022-1)(1/2021-1)...(1/2-1)
so sánh b=1/2022+2/2021+3/2020+...+2021/2+2022/1 VÀ c=1/2+1/3+1/4+...+1/2022+1/2023
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
2. Cho:
B= 1 - 1/2 + 1/3 - 1/4 +...+ 1/2021 - 1/2022 + 1/2023 C= 1/1012 + 1/1013 + 1/1014 +...+ 1/2021 + 1/2022 + 1/2023
Tính: B-C
So sánh 2 phân số
A = \(\dfrac{2022^{2022}+1}{2022^{2021}+1}\) ; B = \(\dfrac{2022^{2023}+1}{2021^{2022}+1}\)
Cho em xin hỏi bài toán này ạ! Em xin cảm ơn !
1/2021×2022+1/2022×2023+1/2023×2024+1/2024×2025-4/2021×2025=
So sánh:
a) A=\(\dfrac{98^{88}+1}{98^{98}+1}\)và B=\(\dfrac{98^{89}+1}{98^{99}+1}\) b) C=\(\dfrac{2022^{2023}+1}{2022^{2021}+1}\)và D=\(\dfrac{2022^{2021}+1}{2022^{2019}+1}\)
a: \(98^{10}\cdot A=\dfrac{98^{98}+98^{10}}{98^{98}+1}=1+\dfrac{98^{10}-1}{98^{98}+1}\)
\(98^{10}\cdot B=\dfrac{98^{99}+98^{10}}{98^{99}+1}=1+\dfrac{98^{10}-1}{98^{99}+1}\)
98^88+1>98^99+1
=>A<B
b: \(\dfrac{1}{2022^2}\cdot C=\dfrac{2022^{2023}+1}{2022^{2023}+2022^2}=1+\dfrac{1-2022^2}{2022^{2023}+2022^2}\)
\(\dfrac{1}{2022^2}\cdot D=\dfrac{2022^{2021}+1}{2022^{2021}+2022^2}=1+\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
2022^2023>2022^2021
=>2022^2023+2022^2>2022^2021+2022^2
=>\(\dfrac{2022^2-1}{2022^{2023}+2022^2}< \dfrac{2022^2-1}{2022^{2021}+2022^2}\)
=>\(\dfrac{1-2022^2}{2022^{2023}+2022^2}>\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
=>C>D
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}\)
so sánh 2022 mũ 2023 +1 phần 2022 mũ 2021 +1 Với 2022 mũ 2021 +1 phần 2022 mũ 2019 +1.help me, giúp với ,khó quá ko làm đc
(15/2021+16/2022-115/2023).(1/2-1/3-1/6)
\(=\left(\dfrac{15}{2021}+\dfrac{16}{2022}-\dfrac{115}{2023}\right)\cdot\dfrac{3-2-1}{6}=0\)
\(\left(\dfrac{15}{2021}+\dfrac{16}{2022}-\dfrac{115}{2023}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)=\left(\dfrac{15}{2021}+\dfrac{8}{1011}-\dfrac{115}{2023}\right)\cdot\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)=\left(\dfrac{15}{2021}+\dfrac{8}{1011}-\dfrac{115}{2023}\right)\cdot0=0\)
(15/2021+16/2022-115/2023).(1/2-1/3-1/6)
=(15/2021+16/2022-115/2023).(1/6-1/6)
=(15/2021+16/2022-115/2023).0
=0
so sánh: M=10^2021 + 1/10^2022 + 1
N=10^2022 + 1/10^2023 + 1
\(M=\dfrac{10^{2021}+1}{10^{2022}+1}\)
\(N=\dfrac{10^{2022}+1}{10^{2023}+1}< \dfrac{10^{2022}+1+9}{10^{2023}+1+9}=\dfrac{10^{2022}+10}{10^{2023}+10}=\dfrac{10\left(10^{2021}+1\right)}{10\left(10^{2022}+1\right)}\)
\(=\dfrac{10^{2021}+1}{10^{2022}+1}=M\)
Vậy \(M>N\)