Những câu hỏi liên quan
Phạm Minh Đức
Xem chi tiết
lediepvi
28 tháng 2 2020 lúc 22:06

kẻ BD

ta có HA=HD
        EA=EB

=> HE là đg tb cuả tam giác ABD 

=> HE//BD; HE=1/2BD (1)

cmtt ta có GF là đg tb cuả tam giác CBD

=> GF//BD;GF=1/2BD (2)

Từ (1)và (2)

=>HE=GF(=1/2BD); HE//GF(//BD)

=> EFGH là hình bình hành

Bình luận (0)
 Khách vãng lai đã xóa
PHAM MINH TIEN
22 tháng 3 2020 lúc 15:26

uygd56tfru uu

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Võ Thảo Vy
Xem chi tiết
Trang Nguyen
Xem chi tiết
Đào Thu Hiền
28 tháng 2 2020 lúc 21:18

(Hình bạn tự vẽ nha :))

ta có AE = 2EB => \(\frac{EB}{AE}=\frac{1}{2}\Rightarrow\frac{EB}{AE+EB}=\frac{1}{1+2}\Rightarrow\frac{EB}{AB}=\frac{1}{3}\)

CMTT⇒\(\frac{BF}{BC}=\frac{1}{3};\frac{DG}{DC}=\frac{1}{3};\frac{DH}{AD}=\frac{1}{3}\)\(\frac{EB}{AB}=\frac{BF}{BC}=\frac{DG}{DC}=\frac{DH}{AD}\left(=\frac{1}{3}\right)\)

Xét ΔABC có \(\frac{EB}{AB}=\frac{BF}{BC}\left(cmt\right)\) => EF//AC (đ/lí Ta-lét đảo)

=>\(\frac{EB}{AB}=\frac{BF}{BC}=\frac{\text{EF}}{AC}=\frac{1}{3}\) (hệ quả đ/lí Ta-lét)

CMTT => HG//AC và \(\frac{HG}{AC}=\frac{HD}{AD}=\frac{1}{3}\)

=> EF//HG và \(\frac{\text{EF}}{AC}=\frac{HG}{AC}\left(=\frac{1}{3}\right)\) => EF = HG

Xét tứ giác EFGH có EF//HG (cmt); EF = HG (cmt)

=> EFGH là hình bình hành

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Hoàng Thái
Xem chi tiết
Rebecca Hopkins
Xem chi tiết
29.Trịnh Ánh Ngọc 8a16
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2021 lúc 10:26

Chọn C

Bình luận (0)
ezezez
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2023 lúc 21:55

a: AE+EB=AB

BF+FC=BC

CG+GD=CD

DH+HA=DA

mà AB=BC=CD=DA và AE=BF=CG=DH

nên EB=FC=GD=HA

Xét ΔEAH vuông tại A và ΔGCF vuông tại C có

EA=GC

AH=CF

Do đó: ΔEAH=ΔGCF

=>EH=GF

Xét ΔEBF vuông tại B và ΔGDH vuông tại D có

EB=GD

BF=DH

Do đó: ΔEBF=ΔGDH

=>EF=GH

Xét ΔEAH vuông tại A và ΔFBE vuông tại B có

EA=FB

AH=BE

Do đó: ΔEAH=ΔFBE

=>EH=EF và \(\widehat{AEH}=\widehat{BFE}\)

\(\widehat{AEH}+\widehat{HEF}+\widehat{BEF}=180^0\)

=>\(\widehat{BFE}+\widehat{BEF}+\widehat{HEF}=180^0\)

=>\(\widehat{HEF}+90^0=180^0\)

=>\(\widehat{HEF}=90^0\)

Xét tứ giác EHGF có

EF=GH

EH=GF

Do đó: EHGF là hình bình hành

Hình bình hành EHGF có EF=EH

nên EHGF là hình thoi

Hình thoi EHGF có \(\widehat{HEF}=90^0\)

nên EHGF là hình vuông

b: 

AH+HD=AD

=>AH+1=4

=>AH=3(cm)

ΔAEH vuông tại A

=>\(AE^2+AH^2=EH^2\)

=>\(EH^2=3^2+1^2=10\)

=>\(EH=\sqrt{10}\left(cm\right)\)

EHGF là hình vuông

=>\(S_{EHGF}=EH^2=10\left(cm^2\right)\)

Bình luận (0)
Limited Edition
Xem chi tiết
Trần Quốc Khanh
22 tháng 2 2020 lúc 19:44

Bài này có trong SGK! nên dễ

Bình luận (0)
 Khách vãng lai đã xóa
lục thị ngọc mai
Xem chi tiết