Cho N=0,7.(20072009-20131999). Chứng minh rằng N là số nguyên.
cho N = 0,7. ( 20072009 - 20031999). CMR : N là một số nguyên
Giải:
Ta cần chứng minh: \(2007^{2009}-2003^{1999}\) có chữ số tận cùng là \(0\)
Ta có:
\(2007^{2009}=2007.\left(\left(\left(2007\right)^2\right)^2\right)^{502}\)
\(=2007.\left(\left(...9\right)^2\right)^{502}=2007.\left(...1\right)\) có chữ số tận cùng bằng \(7\)
Lại có:
\(2003^{1999}=2003^3.\left(\left(\left(2003\right)^2\right)^2\right)^{499}\)
\(=\left(...7\right).\left(\left(...9\right)^2\right)^{499}=\left(...7\right).\left(...1\right)\) có chữ số tận cùng bằng \(7\)
Vậy \(2007^{2009}-2003^{1999}\) có chữ số tận cùng là \(0\)
\(\Rightarrow0,7\left(2007^{2009}-2003^{1999}\right)\) cũng có chữ số tận cùng là \(0\)
Vậy \(N\) là một số nguyên (Đpcm)
Cho \(N=0,7.\left(2007^{2009}-2013^{1999}\right)\).Chứng Minh Rằng N là 1 số nguyên
Cho N = 0,7 * ( 2007^2009-2013^1999) Chứng minh N là một số nguyên.
Chứng minh N là số nguyên ta cần c/m : 2007^2009 – 2013^1999 có chữ số tận cùng bằng 0
xét 2007^2009 = (((20072)2)502 = 2007.((......9)2)502= 2007.(....1) có tận cùng là 7
xét 2013^1999= (((2013)2)2)499= (....7) .( (....9)2)499= (....7) . (...1) có cs tận cùng là 7
=> 2007^2009 – 2013^1999 có chữ số tận cùng bằng 0
Vậy N là số nguyên
tk mình nha
Chứng minh N là số nguyên ta cần c/m : 20072009 – 20131999 có chữ số tận cùng bằng 0.Ta có 20072009 = 2007. ( )5022 2((2007) )= 2007 . ( )5022(...9)= 2007. (….1) có chữ số tận cùng bằng 7. 20131999 = 20133 . ( ) ( )499 4992 2 2((2013) ) (...7) (...9) (...7) (...1)= × = × có chữ số tận cùng bằng 7Vậy 20072009 – 20131999 có chữ số tận cùng bằng 0 ⇒ N là một số nguyên.
Cho N = 0,7.(20072009 - 20131999). Chứng minh rằng: N là một số nguyên
Mình đang cần gấp lắm. Các bạn giúp mình với!!!!!!!!
N=7.(2007^2009-2013^1999)/10 (1)
{Để chứng minh N nguyên thì cần c/m:2007^2009-2013^1999 chia hết cho 10}
Ta có:
*2007^2009
=2007.(2007^4)^502
=2007.(...1)^502
=2007.(...1)=(...7)
*2013^1999
=2013^3.(2013^4)^499
=(...7).(...1)^499
=(...7).(...1)=(...7)
=>2007^2009-2013^1999
=(..7)-(...7)=(...0)
nên chia hết cho 10 (2)
Từ (1),(2)=>N thuộc Z và N là hợp số vì N chia hết cho 7
cho N = 0,7 ( 2007^2009-2013^1999)
chứng minh rằng N nguyên
\(N=0,7.\left(2007^{2009}-2013^{1999}\right)\)chứng minh rằng N là 1 số nguyên
2007^2009 có tận cùng là: 2009:4 dư 1 => 2007^2009 tận cùng là 7
2013^1999 có tận cùng là: 1999:4 dư 3 => 2013^1999 tận cùng là 7
=> 2007^2009 - 2013^1999 chia hết cho 10 và là 1 so thực
=> N=0,7.10.k=7k là 1 số nguyên
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
Chứng minh rằng -0,7(43^43-17^17)là một số nguyên
Chứng minh rằng :-0,7.(43^43-17^17) là 1 số nguyên
cm (43^43-17^17) tận cùng là 0
=> .... cả phép tính nguyên