Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Khánh Linh
Xem chi tiết
Nguyễn Ngọc Anh Minh
8 tháng 5 2021 lúc 8:02

 Ta có

DB=DM; EC=EM; AB=AC (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến các tiếp điểm = nhau)

\(C_{ADE}=AD+DM+AE+EM=AD+DB+AE+EC=\)

\(=AB+AC=2AB\)

Khách vãng lai đã xóa
Phương Vy
20 tháng 8 2021 lúc 16:53

Theo tính chất hai tiếp tuyến cắt nhau ta có: DM=DB, EM=EC.

Chu vi tam giác ADE bằng :

AD+DE+AE=AD+DM+ME+EA

=AD+DB+EC+AE

=AB+AC=2 . AB .

Khách vãng lai đã xóa
Giang
21 tháng 8 2021 lúc 20:04

Theo tính chất hai tiếp tuyến cắt nhau ta có: DM=DB, EM=EC.

Chu vi tam giác ADE bằng :

AD+DE+AE=AD+DM+ME+EA

=AD+DB+EC+AE

=AB+AC=2 . AB .

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 9 2017 lúc 9:41

Để học tốt Toán 9 | Giải bài tập Toán 9

 Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.

Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)

Quỳnh 9/2 Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 19:40

a: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 6 2017 lúc 2:56

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.

Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)

b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).

Xét ΔCBD có :

CI = IB

CO = OD (bán kính)

⇒ BD // HO (HO là đường trung bình của BCD) ⇒ BD // AO.

c) Theo định lí Pitago trong tam giác vuông OAC:

A C 2   =   O A 2   –   O C 2   =   4 2   –   2 2   =   12

=> AC = √12 = 2√3 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9

Do đó AB = BC = AC = 2√3 (cm).

Hùng Đinh Tuấn
Xem chi tiết

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp đường tròn đường kính OA

=>A,B,O,C cùng thuộc (I), I là trung điểm của OA

b: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

c: Ta có: ΔBOA vuông tại B

=>\(\widehat{BOA}+\widehat{BAO}=90^0\)

=>\(\widehat{BOA}=90^0-30^0=60^0\)

Xét ΔBIO có IO=IB

nên ΔIBO cân tại I

Xét ΔIBO cân tại I có \(\widehat{IOB}=60^0\)

nên ΔIBO đều

=>BI=OI=R

=>\(I\in\left(O\right)\)

Ta có: BI=R

mà BI=CI

nên CI=R

=>OB=BI=CI=OC

=>OBIC là hình thoi

=>BI//OC

Tree Sugar
Xem chi tiết
Mèo Dương
Xem chi tiết

1: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD

mà BC\(\perp\)OA

nên CD//OA

2: Ta có: OA là đường trung trực của BC

OA cắt BC tại E

Do đó: E là trung điểm của BC và OA\(\perp\)BC tại E

Xét ΔOBA vuông tại B có BE là đường cao

nên \(OE\cdot OA=OB^2\)

=>\(OE\cdot OA=OD^2\)

=>\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)

Xét ΔOED và ΔODA có

\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)

\(\widehat{EOD}\) chung

Do đó: ΔOED~ΔODA

=>\(\widehat{ODE}=\widehat{OAD}\)

 

Bich Nga Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 13:17

a: Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên OBAC là tứ giác nội tiếp

=>O,B,A,C cùng thuộc một đường tròn

Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC (3)

b: Xét (O) có

ΔBCD nội tiếp

CD là đường kính

Do đó: ΔDBC vuông tại B

=>DB\(\perp\)BC(4)

Từ (3) và (4) suy ra DB//OA

c: Đề sai rồi bạn

Mon an
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 5:48

a: Xét tứ giác OBAC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>OBAC là tứ giác nội tiếp đường tròn đường kính OA

Tâm là trung điểm của OA

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Xét (O) có

ΔCBD nội tiếp

CD là đường kính

Do đó: ΔCBD vuông tại B

=>CB\(\perp\)BD

Ta có:CB\(\perp\)BD

OA\(\perp\)BC

Do đó: OA//BD